OCTOBER 28, 2021 MODIFIED FOR SR400 PHASE 1 BRIDGE DESIGN-BUILD PROJECT

BFI GEOTECHNICAL DATA REPORT

Project No: PI# 0001757 Fulton Counties, Georgia

PREPARED FOR: AECOM 1360 Peachtree Street NE, Suite 500 Atlanta, Georgia 30309

AECOM Project 60558412 NOVA Project Number 2018089 - Task Order 5

February 21, 2020 (Revision 1)

February 21, 2020 (Revision 1)

AECOM

1360 Peachtree Street NE, Suite 500 Atlanta, Georgia 30309

Attention: Scott A. Gero, P.E. - Project Manager

This report has been produced for the sole and exclusive use of AECOM, HNTB and the Georgia Department of Transportation. Distribution of this report to others shall be for information purposes only. Use and reliance on this report or any of its contents by others is at their sole risks.

OCTOBER 28, 2021 BODY OF REPORT REDACTED TO ONLY INCLUDE THE INFORMATION NEEDED FOR THE SR400 BRIDGE DESIGN BUILD PROJECT.

Subject: BFI Geotechnical Data Report SR400 BRIDO Project No: MSL00-0001-00(757) PI No. 0001757 Fulton Counties, Georgia AECOM Project 60558412 NOVA Project Number 2018089 – Task Order 5

Dear Mr. Gero,

NOVA Engineering and Environmental, LLC (NOVA) has completed the Bridge Foundation Investigation (BFI) Geotechnical Data Report (GDR) for the bridges associated with the GDOT Counties, Georgia. This work has been performed under Task Order 5 of this project with Purchase Order Number 102551 and in general accordance with GDOT requirements and modified based on scoping meetings with HNTB and United Consulting.

This December 27, 2019 report supersedes the October 18, 2019 version and includes data for borings subsequently drilled in the Chattahoochee River after obtaining approval from the National Park Service. An OMAT historical search for GDOT BFI reports, a Pavement Evaluation Study, a Soil Survey (SS) GDR, **Constant Service** reports were submitted previously under separate cover.

We thank you for the opportunity to assist you with this project and look forward to working with you on future projects.

Sincerely, NOVA Engineering and Environmental LLC

Mahalingam Bahiradhan, P.E. Project Engineer

Eric K. Tay, P.E.

Senior Engineer

J. Stephen Willenborg, P.E Project Manager

Randall L. Bagwell, P. Project Principal

PROFESSIONAL | PRACTICAL | PROVEN 3900 Kennesaw 75 Parkway, Suite 100, Kennesaw, Georgia 30144 t. 770.425.0777 / f. 770.425.1113 / usanova.com

TABLE OF CONTENTS

1.	PROJECT LOCATION / DESCRIPTION	.1
2.	BRIDGE FOUNDATION INVESTIGATIONS	.2
3.	GENERAL GEOLOGY	.3
4.	SCOPE OF WORK	.4
4.1	FIELD EXPLORATION	.4
4.2	SOIL CLASSIFICATION AND LABORATORY TESTING	.6
4.3	GEOTECHNICAL DATA REPORTS	. 7
5.	OMAT HISTORICAL BFI GEOTECHNICAL DATA	.8
6.	LIMITATIONS	.9

FIGURES

Figure 2: General Project Geology Map

<u>ATTACHMENTS</u>: Proposed, Replaced or Modified Bridges - BFI Geotechnical Data Reports (Includes available historical GDOT BFI data)

ATTACHMENTS CONTINUED: Proposed Bridges – Historical GDOT BFI Data Only

Attachment T: Pitts Road over SR 400; BSN:121-0476-0 Attachment U: Kimball Bridge Road. over SR 400; BSN:121-0475-0

SPT HAMMERS ENERGY CALIBRATIONS

S&ME- CME 55 (SN 328245) S&ME- CME 550X (SN 292103) S&ME- Diedrich D-50 Track (SN 382) Betts- CME 75 (SN 164447) Betts- CME 55 (SN 54005) Tri-State-CME 45 Barge Rig (SN 31692402)

IMPORTANT INFORMATION ABOUT THIS GEOTECHNICAL-ENGINEERING REPORT

BFI GEOTECHNICAL DATA REPORT

PI No. 0001757, Fulton February 21, 2020 (Revision 1)

2. BRIDGE FOUNDATION INVESTIGATIONS

This BFI GDR report includes compilation of geotechnical data for bridges that are
, proposed bridge replacements,
where NOVA conducted foundation investigations. We note that the
referenced attachment bridge numeric labelling may not be sequential as some of the
previously requested bridge locations assigned for investigation were removed
from the planned scope of work, due to changes in the ongoing design-
build scheme.

Soil borings were drilled based on proposed bridge layouts provided by AECOM at the time of our field exploration. Please note that proposed bridge locations, configurations and number of spans, etc. may have changed since conducting our field explorations.

In addition, NOVA searched the archive files at GDOT Office of Materials and Testing (OMAT) to obtain historical BFI geotechnical data. Historical BFI geotechnical data found and compiled were provided to AECOM previously. Based on review of these historical BFI geotechnical data, NOVA was instructed to conduct additional foundation investigation borings on specific planned bridges. Excerpts of historical BFI data found at or in the immediate vicinity of the proposed bridges where NOVA conducted foundation investigations are included with the individual BFI GDR in Attachments

We have also compiled excerpts of historical GDOT BFI reports for proposed bridges where NOVA was not requested to conduct additional foundation investigation drilling. These are compiled in Attachments by bridge names and bridge structure numbers.

3. <u>GENERAL GEOLOGY</u>

The site is located in the Piedmont Geologic Region, a broad northeasterly trending province underlain by crystalline rocks up to 600 million years old. The Piedmont region is bounded by the Blue Ridge Range of the Appalachian Mountains to the northwest, and by the leading edge of Coastal Plain sediments, commonly referred to as the "Fall Line" to the southeast. Numerous episodes of crystal deformation have produced varying degrees of metamorphism, folding and shearing in the underlying rock. The resulting metamorphic rock types in the project area are predominantly a series of Precambrian-Paleozoic age.

Residual soils in the region are primarily derived from the in-situ parent rock by chemical weathering. The extent of the weathering is influenced by the mineral composition of the rock and defects such as fissures, faults and fractures. The residual profile can generally be divided into three zones:

- An upper zone near the ground surface consisting of red clays and clayey silts which have undergone the most advanced weathering,
- An intermediate zone of less weathered micaceous sandy silts and silty sands, frequently described as "saprolite", whose mineralogy, texture and banded appearance reflects the structure of the original rock, and
- A transitional zone between soil and rock termed partially weathered rock (PWR).

The boundaries between zones of soil, partially weathered rock, and bedrock are erratic and poorly defined. Weathering is often more advanced next to fractures and joints that transmit water, and in mineral bands. Boulders and rock lenses are sometimes encountered within PWR or soil matrix. Consequently, significant fluctuations in depths to materials may occur over short horizontal distances.

The General Project Geology Map is shown as Figure 2.

4. SCOPE OF WORK

Our scope of work included the following:

- 1. Field Exploration
- 2. Soil Classification and Laboratory Testing
- 3. Preparation of BFI Geotechnical Data Report

4.1 FIELD EXPLORATION

The number of borings and their locations for each bridge were determined by reviewing available subsurface investigation data, proposed locations of the new (or to be replaced or modified) bridges, the planned number of bridge spans per structure, and given/estimated bent locations in general accordance with GDOT requirements and as modified based on scoping meetings with HNTB and United Consulting. Boring locations were established in the field by NOVA personnel using the provided (then-current) site plans, a handheld GPS device, and measuring distances from permanent site landmarks. Boring locations were selected close to the proposed bents as practically possible. Some boring locations were offset to safe distances from marked utility lines at the time of drilling. Utilities at the proposed boring locations were located by calling Georgia 811 prior to drilling test borings.

GDOT Intelligent Transportation System (ITS) buried fiber optics cables were not located by Georgia 811. NOVA coordinated with the GDOT ITS Department and were provided with drawings of the Advanced Traffic Management System (ATMS) Plans for the project corridor. NOVA's field engineers met with GDOT ITS Supervisor and personnel from the GDOT Traffic Management Center (TMC) on site at several locations to go over fiber optic line plans. Our field personnel also observed remnants of water-soluble paint markings and/or flags for marking of utilities for the Subsurface Utility Engineering (SUE) efforts for the project. Some of the boring locations required private utility locator services to locate utilities. Hand clearing/dozer clearing were required to access some of the boring locations.

Maintenance of Traffic (MOT) was provided by Area Wide Protective (AWP) Services for borings drilled in travel lanes or close to travel lanes/shoulders. A Law Enforcement Officer (LEO) and cruiser with "blue lights" were included at some locations for added safety. Traffic Interruption Reports (TIR) and MOT Plans were prepared and submitted to the GDOT Traffic Management Center (TMC) in advance for approval and to obtain TIR numbers. Our field engineers called in to the GDOT TMC prior to temporary lane closures and after completion of our daily field operations. Night work was conducted for drilling operations on SR 400.

Our drilling subcontractors, S&ME, Betts Drilling, and Tri-State Drilling, performed all test borings under the direction of a NOVA Project Engineer. Borings were drilled with All-Terrain Vehicle (ATV), truck mounted drill-rigs, or barge platform equipped with hollow-stem continuous flight augers and/or wash boring augers. Standard Penetration Test (SPT) were

obtained using automatic hammers. Calibration information for the SPT hammers utilized on this project are included with this report.

The Standard Penetration Test (SPT) with a standard 1.4-inch I.D., 2.0-inch O.D., split-tube sampler as per ASTM D1586 was performed at depth intervals in general accordance with GDOT OMAT guideline. SPT includes driving the sampler through 18-inches using a 140 pounds hammer free falling through 30 inches. The number of blows required to drive the sampler through every 6 inches were recorded. The SPT "N-value" (Penetration Resistance) were recorded as the sum of the number of blows required to drive the sampler through the last 12 inches or a portion thereof. Representative portions of the soil samples, obtained from the sampler, were placed in air-tight glass jars and transported to our laboratory for further evaluation and laboratory testing.

Auger refusal occurs when very hard or very dense material, frequently boulders or the upper surface of bedrock, is encountered and cannot be penetrated by a power auger. In some cases, when auger refusal was encountered at shallow depths that were not supported by the surficial features, offset borings were required to verify auger refusal/presence of partially weathered rock (PWR) at deeper depths. Partially weathered rock (PWR) is a transitional material between soil and the underlying parent rock that is defined as residual materials that exhibit a standard penetration resistance (SPT N-value) exceeding 100 bpf.

In addition to the split-spoon samples, "undisturbed" Shelby tube samples were also obtained at some locations where boring depths exceeded 75 feet and loose strata were encountered. Shelby tube samples not tested are stored in a climate control storage facility for additional laboratory testing, if requested.

according to ASTM D2113–Standard Practice for Rock Core Drilling and Sampling of Rock for Site Exploration.

The groundwater levels reported on the Test Boring Records represent measurements made at the completion of the soil test boring. The soil test borings were backfilled immediately after their completion with soil cuttings and patched with asphalt/concrete when needed.

Coordinates and elevations of the boring locations were surveyed and provided by ACCURA Engineering after the borings have been completed. The elevations at the borings are based on the North American Vertical Datum of 1988 (NAVD 88).

4.2 SOIL CLASSIFICATION AND LABORATORY TESTING

Soil Classification: Soil classification provides a general guide to the engineering properties of various soil types and enables the engineer to apply past experience to current problems. In our explorations, samples obtained during drilling operations are classified by an engineer using the visual-manual procedures in general accordance with ASTM D2488. The soils are classified according to relative density/consistency (based on SPT N-values), color and composition. Visual classification is confirmed/corrected based on the laboratory test results from representative soil samples obtained from each major soil layer. These final soil classification descriptions included on our "Test Boring Records" are based on using the Unified Soil Classification System in general accordance with ASTM D2487.

Laboratory Testing: The following laboratory index testing were performed on representative samples collected during the field exploration to assist in the soil classification:

- Grain Size Analysis ASTM D6913
- Moisture Content ASTM D2216
- Atterberg Limits ASTM D4318
- Unconfined Compressive Strength of Rock- ASTM D7012
- Soil Resistivity ASTM G187
- pH of Soil ASTM G51, AASHTO T289
- Chloride of Soil ASTM D512, AASHTO T291
- Sulfate of Soil ASTM C1580, D516, AASHTO T290

Grain Size Analysis: The grain size analysis consists of determining the amounts of various sizes of soil particles using a series of standard sieve openings. The percentage of soil, by weight, passing the individual sieves is then recorded and generally presented in a graphical format. The percentage of fines passing through the No. 200 sieve is generally considered to represent the amount of silt and clay of the tested soil sample. The sieve analysis test was conducted in general accordance with ASTM D6913 - Standard Test Methods for Particle Size Distribution Using Sieve Analysis.

Moisture Content: In a given soil-air-water matrix, the moisture content is the ratio expressed as a percentage of the weight of water to the weight of the soil particles. This test was conducted in general accordance with ASTM D2216 - Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass.

Atterberg Limits: The Atterberg Limits are different descriptions of the moisture content of fine-grained soils as it transitions between a solid to a liquid-state. For classification purposes the two primary Atterberg Limits used are the Plastic Limit (PL) and the Liquid Limit (LL). The Plasticity Index (PI) is also calculated for soil classification, which is defined as the difference between Liquid Limit and Plastic Limit. The Plastic Limit (PL) is the moisture content at which a soil transitions from a semisolid state to a plastic state. The Liquid Limit (LL) is defined as the moisture content at which a soil transitions from a plastic state to a liquid state. Atterberg

Limits tests were performed in general accordance with ASTM D4318 - Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils.

Unconfined Compressive Strength: Unconfined strength test of rock was performed to assist the designers in determining the required embedded length of drilled shafts, if used, and to provide some input in selecting the core bit types and the capacity of the excavation equipment for drilled shafts, if used. Unconfined compressive strength tests of intact rock specimens were performed in general accordance with ASTM D7012 (Method C) - Standard Test Methods for determining unconfined compressive strength of intact rock core specimens.

Soil Resistivity: The resistivity of the surrounding soil environment is a factor in the corrosion of underground structures. Soil resistivity may affect the material selection of a structure. Soil resistivity tests were performed in accordance with ASTM G187 - Standard Test Method for Measurement of Soil Resistivity Using the Two-Electrode Soil Box Method.

pH of Soil: The principle use of the test is to supplement soil resistivity measurements to determine the corrosion potential of soils for the materials of a buried structure. Soil pH tests were performed in accordance with ASTM G51 - Standard Test Method for Measuring pH of Soil for Use in Corrosion Testing.

Chloride and Sulfate Contents of Soil: Attack on precast, cast-in-place concrete occurs in soils with high sulfate or chloride concentrations. The solubility of the sulfate or chloride are among factors influencing the rate of deterioration on concrete piles. Chloride content of soil were determined in accordance with ASTM D512, AASHTO T291 - Chloride Ion Content in Soil. Sulfate content of soil were determined in accordance with ASTM C1580, D516, AASHTO T290 - Sulfate Ion Content in Soil.

4.3 GEOTECHNICAL DATA REPORTS

The results of our study are presented as individual Geotechnical Data Report (GDR) for each bridge where NOVA conducted foundation investigation drilling. Each individual GDR (Attachments A through S) includes the following:

- Introduction: The introduction provides a description of proposed bridge location. Existing bridge structure IDs are referenced in the reports for replacement or widening bridges. Site photographs are referenced in the Appendix A of each Attachment.
- **Geology:** A brief general geology of the bridge area is included along with a geology map of the individual area in Appendix A of each Attachment.
- Field and Laboratory Testing: A description and summary of the field and laboratory testing performed are included. In Appendix A of each Attachment, a boring location plan is provided along with the proposed bridge location or modification. Subsurface data provided in Appendix B of each Attachment includes a subsurface data profile and Test Boring Records. Test Boring Records include the standard penetration test

(SPT) resistances, USCS soil types and their depths, engineering soil properties, rock descriptions, and depth of groundwater encountered in the borings. Laboratory data provided in Appendix C of each Attachment includes a summary of laboratory test results and laboratory test results sheets.

• **Historical Geotechnical Data:** If previous geotechnical data was available, excerpts of the relevant historical GDOT BFI data records are included in Appendix D of each of the individual geotechnical data reports. Please also note that historical records were not found for all of the project's bridge locations.

5. OMAT HISTORICAL BFI GEOTECHNICAL DATA

Excerpts of historical data are included as Appendix D in each GDR where NOVA conducted foundation investigation drilling. For proposed bridges where NOVA was not requested to conduct foundation investigation drilling, the excerpts of available historical GDOT BFI data are compiled as Attachments T through V by bridge names and bridge structure numbers. The historical boring location plans provided by us represents our understanding of the locations of historical soil borings with respect to the existing structures. We have assumed that the bridge locations on the historical reports are the same as the current locations of existing bridges. The user needs to verify this assumption prior to using the respective historical data.

6. LIMITATIONS

This report includes the summary of our data collection effort within the scope of our work and is based on the generally accepted geotechnical engineering practices. The stratification lines and depth designations in the Test Boring Records represent approximate boundaries between various subsurface strata. Actual transitions between soil strata may be gradual. No warranties/guarantees are expressed or implied. NOVA is not responsible for accuracy or missing information associated with the historical documents or the reports/documents prepared by others for this project.

This report is intended for the sole use of AECOM, HNTB and the Georgia Department of Transportation only. The scope of work performed during this study was developed for purposes specifically intended by AECOM, HNTB and the Georgia Department of Transportation and may not satisfy other users' requirements. Use of this report or the findings will be at the sole risk of the user. NOVA is not responsible or liable for the interpretation by others of the data in this report, nor their conclusions, recommendations or opinions.

Our professional services have been performed, our findings obtained and presented in accordance with generally accepted geotechnical engineering principles and practices in the State of Georgia. This report is intended to be a geotechnical data report with no engineering conclusions or recommendations provided.

FIGURES

ATTACHMENTS

This Report has been produced for the sole and exclusive use of AECOM, HNTB and the Georgia Department of Transportation. Distribution of this report to others shall be for information purposes only. Use and reliance on this report or any of its contents by others is at their sole risks.

ATTACHMENT B

Bridge 2 - Roberts Drive over SR 400

Project No: MSL00-0001-00(757) PI No. 0001757

TABLE OF CONTENTS

4.	HISTORICAL DATA	.3
	FIELD EXPLORATION LABORATORY TESTING	
3.	FIELD AND LABORATORY PROCEDURES	.2
2.	SITE GEOLOGY	.2
1.	INTRODUCTION	.2

APPENDICES

Appendix A – Figures
Appendix B – Subsurface Data
Appendix C – Laboratory Test Data
Appendix D – Historical Data

1. INTRODUCTION

Existing bridge on Roberts Drive over SR 400 (Structure ID 121-0316-0), as shown in Figure 1 of Appendix A, is a four-span structure that crosses over SR 400 at a skew angle. The new longer bridge replaces the existing bridge at approximately 50 feet south of current location as part of

, PI No. 0001757).

2. SITE GEOLOGY

the

According to the "Geology of the Greater Atlanta Region" by McConnell and Abrams, 1984, the site as shown in Figure 2 of Appendix A, is generally underlain by the "fs: Sandy Springs Group" Formation. This geologic formation typically includes an upper unit of graphite-garnet-mica schist with lesser amounts of biotite gneiss and amphibolite.

3. FIELD AND LABORATORY PROCEDURES

3.1 FIELD EXPLORATION

Our field exploration included five soil test borings (B2-1 through B2-3A) drilled to depths of 4.1 to 18.7 feet below the existing ground surface. Table 1 shows a summary of field testing, locations and quantities. The approximate boring locations are shown on Figure 3 of Appendix A. The results of the field exploration, USCS soil classifications, and laboratory test results are presented in Test Boring Records in Appendix B.

ė	LOCA		표		
BORING No.	LATITUDE	LONGITUDE	GROUND SURFACE ELEVATION (feet)	BORING DEP (feet)	TOTAL SPT
B2-1	33.99145926	-84.33860112	1050.2	18.7	4
B2-2	33.99158441	-84.33817267	1034.4	4.1	2
B2-2A	33.99158441	-84.33817267	1034.4	6.6	3
B2-3	33.99149878	-84.33787676	1032.7	6.2	1
B2-3A	33.99149878	-84.33787676	1032.7	7.5	1
			Total	43.1	11

Table 1: Summary of Field Testing and Test Hole Quantities

3.2 LABORATORY TESTING

The laboratory test results are presented in the Appendix C with Table A showing the summary of all laboratory test results. The Test Boring Records attached in Appendix B include Atterberg limits (Plastic Limit and Liquid Limit) and moisture content within the "Graphic Depiction" of the log. Table 2 provides number of laboratory tests performed.

BORING No.	LIQUID LIMIT	PLASTIC LIMIT	GRAIN SIZE	USCS CLASSIFICATION	MOISTURE CONTENT
B2-1	2	2	2	2	2
B2-2	1	1	1	1	1
B2-2A	1	1	1	1	1
B2-3	1	1	1	1	1
B2-3A	1	1	1	1	1
Total	6	6	6	6	6

Table 2: Number of Laboratory Tests Performed

4. HISTORICAL DATA

Previous soil boring data at the vicinity of the proposed bridge location was obtained from GDOT OMAT archive files and is included in Appendix D of this report. NOVA is not responsible for the presented historical BFI geotechnical data prepared by others and found in GDOT OMAT archive file storage. Both historical BFIs were described as bridges over SR 400 (North Fulton Expressway). Appears the historical BFI for the 5/9/68 is probably for the current bridge with four spans. Figure 4 of Appendix D represents our understanding of the locations of historical soil borings with respect to the existing structure. The user should review the attached documents and confirm these locations for their use.

APPENDIX A

FIGURES

FIGURE 1 BRIDGE 2 – Roberts Drive over SR 400 EXISTING BRIDGE SOURCE: GDOT Bridge Inspection Report

- PI No. 0001757

BFI GEOTECHNICAL DATA REPORT Fulton Counties, Georgia NOVA Project Number 2018089 - Task Order 5

pfu cpq fs Sandy Springs Group (Higgins and McConnell, 1978a: Kline, 1980; this report): Similar to sequence observed in northern Piedmont and at least partially equivalent to Atlanta Group (see text). Includes a lower unit of intercalated biotite gneiss, mica schist and amphibolite (pfu); a middle unit composed of micaceous quartzite, mica schist and graphitic schist (cpq); and an upper unit of graphite-garnetmica schist with lesser amounts of biotite gneiss and amphibolite (fs).

FIGURE 2 BRIDGE 2 – Roberts Drive over SR 400 SITE GEOLOGY SOURCE: McConnell & Abrams, 1984

PI No. 0001757 BFI GEOTECHNICAL DATA REPORT Fulton Counties, Georgia NOVA Project Number 2018089 – Task Order 5

FIGURE 3 BRIDGE 2 – Roberts Dr over SR 400 BORING LOCATION PLAN SOURCE: Google Earth Aerial Photos SCALE: Not to Scale

- PI No. 0001757

BFI GEOTECHNICAL DATA REPORT Fulton Counties, Georgia NOVA Project Number 2018089 - Task Order 5

APPENDIX B SUBSURFACE DATA

KEY TO SYMBOLS AND CLASSIFICATIONS

Drilling Symbols

	Split Spoon Sample
	Undisturbed Sample (UD)
	Standard Penetration Resistance (ASTM D1586)
Ţ	Water Table at least 24 Hours after Drilling
Ā	Water Table 1 Hour or less after Drilling
100/2"	Number of Blows (100) to Drive the Spoon a Number of Inches (2)
NX, NQ	Core Barrel Sizes: 2 ¹ / ₈ - and 2-Inch Diameter Rock Core, Respectively
REC	Percentage of Rock Core Recovered
RQD	Rock Quality Designation – Percentage of Recovered Core Segments 4 or more Inches Long
	Loss of Drilling Water
MC	Moisture Content Test Performed
N/E	Not Encountered
N/M	Not Measured
C	Caving

Strata Symbols

Paving

Gravel /Graded Aggregate Base

Fill

Clayey Sand

Sandy Silt/Silt

 $\langle \rangle \rangle$

Low Plasticity Clay

Partially Weathered Rock

High Plasticity Clay

Topsoil

Poorly Graded Sand with Silt

CORRELATION OF PENETRATION RESISTANCE WITH RELATIVE DENSITY AND CONSISTENCY

	Number of Blows, "N"	Approximate Relative Density
	0 - 4	Very Loose
	5 – 10	Loose
SANDS	11-30	Medium Dense
	31 – 50	Dense
	Over 50	Very Dense
	Number of Blows, "N"	Approximate Consistency
	0 – 2	Very Soft
	3 – 4	Soft
SILTS	5 – 8	Firm
and	9 – 15	Stiff
CLAYS	16 - 30	Very Stiff
	31 - 50	Hard
	Over 50	Very Hard

DRILLING PROCEDURES

Soil sampling and standard penetration testing performed in accordance with ASTM D1586. The standard penetration resistance is the number of blows of a 140 pound hammer falling 30 inches to drive a 2-inch O.D., 1^{*/-} inch I.D. split spoon sampler one foot. The undisturbed sampling procedure is described by ASTM D1587.

COARSE GRAINED	GRAVELS	Clean Gravel	GW	Well graded gravel
SOILS		less than 5% fines	GP	Poorly graded gravel
		Gravels with Fines	GM	Silty gravel
		more than 12% fines	GC	Clayey gravel
	SANDS	Clean Sand	SW	Well graded sand
		less than 5% fines	SP	Poorly graded sand
		Sands with Fines	SM	Silty sand
		more than 12% fines	SC	Clayey sand
FINE GRAINED	SILTS AND CLAYS	Inorgania	CL	Lean clay
SOILS	Liquid Limit	Inorganic	ML	Silt
	less than 50	Organic	OL	Organic clay and silt
	SILTS AND CLAYS	Inorganic	СН	Fat clay
	Liquid Limit	inorganic	MH	Elastic silt
	50 or more	Organic	ОН	Organic clay and silt
HIGHLY ORGANIC SOILS		Organic matter, dark color, organic odor	РТ	Peat

SOIL CLASSIFICATION CHART

PARTICLE SIZE IDENTIFICATION

GRAVELS	Coarse	¾ inch to 3 inches
	Fine	No. 4 to ¾ inch
SANDS	Coarse	No. 10 to No. 4
	Medium	No. 40 to No. 10
	Fine	No. 200 to No. 40
SILTS AND CLAYS		Passing No. 200

NOVA	PROJECT: CLIENT: <u>AECOM/GDOT</u> PROJECT LOCATION: SR 400 - Fulto	n and F			01757 Inties	PROJECT NO LATITUDE: _ LONGITUDE:	33.991	45926
TEST BORING RECORD B2-1	LOCATION: <u>BFI 2 - Roberts Drive ov</u> DRILLER: <u>S&ME CME-550X (SN 29</u> DRILLING METHOD: <u>Hollow Stem A</u> DEPTH TO - WATER> INITIAL: ¥N	er SR 40 2103) uger%	0	RGY:	91.4	ELEVATION: LOGGED BY: DATE: N/MCAVIN	<u> </u>).2 feet Cobkit)19
Depth (feet) Elevation (ft-NAVD 88)	Description	Graphic	Groundwater	Sample Type	N-Value	Graphic BLOW COUN MATURAL MO PLASTIC LIMIT	DISTURE	1 LIQUID LIN
	TOPSOIL: 2 inches White tan silty medium to fine SAND (SM					10 20		0 60
whit	EATHERED ROCK: Sampled as very dens e tan silty medium to fine SAND dium dense brown micaceous silty coars				100/ 10"			
10 - 1040 -	fine SAND (SM)				14			
15 	(,				15			
	EATHERED ROCK: Sampled as very dens <u>hite red gray silty coarse SAND</u> Auger Refusal at 18.7 ft.				100/2"			
25 								
30 - 1020								
35 - 1015								

NOVA TEST BORING RECORD B2-3	PROJECT:						33.99 -84.3 103 103 J. 4/30/ IG> <u>C</u>	3.99149878 34.33787676 1032.7 feet J. Cobkit 30/2019	
Depth (feet) Elevation (ft-NAVD 88)	Description	Graphic	Groundwater	Groundwater Sample Type	N-Value	Graphic Depiction BLOW COUNT NATURAL MOISTURE PLASTIC LIMIT			
0 	TOPSOIL: 3 inches Gray silty medium to fine SAND (SM)					10 2	0 30 4	40 60	
grayish	THERED ROCK: Sampled as very dense brown silty coarse to fine SAND Auger Refusal at 6.2 ft.	<u> </u> 2			100/2"				
- 1020 - 1020 15									
1015 									
- 1010 - 25 - -									
- 1005 									
– 1000 									

APPENDIX C LABORATORY TEST DATA

PAGE 1 Of 1

Table A: Bridge 2 Summary of Laboratory Tests Results

BORING No.	SAMPLE DEPTH (Feet)	Liquid Limit (%)	PLASTIC LIMIT (%)	PLASTICITY INDEX (%)	PERCENT FINER #40	PERCENT FINER #200	USCS CLASSIFICATION	MOISTURE CONTENT (%)
B2-1	10.0	NP	NP	NP	65.7	22.6	SM	11.1
B2-1	15.0	NP	NP	NP	65.7	21.9	SM	10.6
B2-2	3.0	NP	NP	NP	46.3	23.2	SM	12.6
B2-2A	7.0	NP	NP	NP	21.1	8.9	GW-GM	1.7
B2-3	7.5	NP	NP	NP	54.6	27.7	SM	8.7
B2-3A	7.5	NP	NP	NP	21.3	7.5	GW-GM	0.9

NP: Non-Plastic

Tested By: ML Smith

Tested By: ML Smith

Tested By: ML Smith

Tested By: ML Smith

Tested By: MLS

Tested By: AB

Tested By: MLS

Tested By: AB

Tested By: MLS

Tested By: AB

Tested By: MLS

Tested By: AB

APPENDIX D HISTORICAL DATA

FIGURE 4 BRIDGE 2 – Roberts Dr over SR 400 HISTORICAL BORING LOCATION PLAN SOURCE: Google Earth Aerial Photos SCALE: Not to Scale

- PI No. 0001757

BFI GEOTECHNICAL DATA REPORT Fulton & Forsyth Counties, Georgia NOVA Project Number 2018089 - Task Order 5

STATE HIGHWAY DEPARTMENT OF GEORGIA

INTERDEPARTMENT CORRESPONDENCE

FILE	APD-F-056-1 (6) Fulton Not Let to Contract	OFFICE	Atlanta, Georgia
,	· · ·	DATE	March 29, 1967
FROM	W. F. Abercrombie, Engineer of Materials a	and Tests	

C. A. Marmelstein, State Highway Bridge Engineer

GUBJECT

70

Bridge Foundation Investigation APD-F-056-1 (6) Fulton North Fulton Expressway Underpass Roberts Drive Bridge No. 14

As requested, a bridge foundation investigation has been made at the above listed project. Attached are the results of this work. If any additional information is needed, please notify us.

Very truly yours,

W. F. Abercrombie Engineer of Materials and Tests

WFA:TDM:kab

BRIDGE FOUNDATION INVESTIGATION

APD-F-056-1 (6) FULTON NORTH FULTON EXPRESSWAY UNDERPASS ROBERTS DRIVE BRIDGE NO. 14

1. LOCATION-

This bridge is to be located over the proposed North Fulton Expressway approximately 1.3 miles south of the Chattahoochee River crossing. It will be geologically located in a cut section containing dense residual soils underlain by weathered granite gneiss bedrock.

2. SUBSURFACE DETAILS-

Reference should be made to the attached boring logs and subsurface details. Some pertinent details are as follows:

a. The ground water table was between elevation 1024 and 1026.5 during this investigation.

b. Soils encountered near proposed footing elevations consisted chiefly of dense silty micaceous sands (residual soils) except at bent 4 right (boring #7). Soils encountered in boring 7 were noticeably looser.

Dense soil is located conveniently for safe support с. of spread footing foundations at all bents. These highly micaceous soils are easily disturbed when exposed to weathering; consequently, footings should be poured immediately after excavation.

Steel "H" piles used in pile bents are suitable foundations for the end bents. The maximum bridge borings recommended for "H" piles at this site, based on soil strength are as follows:

> 10" BP 42's 40 Tons 12" BP 53's 55 Tons

These piles will be chiefly end bearing piles with pile tips seated in weathered rock. Pile tip elevations are estimated to range near elevation 1037 at bent 1 and near elevation 1050 at bent 7. Piles may be driven to bearing by the dynamic formula.

Spread Footings - Spread footings are also applicable for end bent foundations. These footings may be placed on dense soil as follows:

Bent	Footing Elevation	Max. Safe Design Press.
1	1062.5	4 ksf
7	1052.0	4 ksf

END BENT FOUNDATIONS-3.

BRIDGE FOUNDATION INVESTIGATION

APD-F-056-1 (6) FULTON NORTH FULTON EXPRESSWAY UNDERPASS ROBERTS DRIVE BRIDGE NO. 14 Page 2

> Slope paving and a cap to shoulder point berm width of at least 2' are recommended with this spread footing design. A minimum cover of 2' should also be provided.

4. <u>INTERMEDIATE BENT FOUNDATIONS</u>- Spread footings are recommended for all intermediate bent foundations. These footings may be placed on medium dense to dense soils as follows:

<u>Bent</u>	Footing	Elev.	Maximum Safe Design Press.
2	left	1036	4 ksf
2	right	1036	5 ksf
3	left	1034	5 ksf
3	right	1034	4 ksf
4	left	1034	4 ksf
4	right	1034	3.5 ksf

All spread footings at this site should be poured as soon after excavation as possible to prevent disturbance of underlying soil.

> Thomas D. Moreland Civil Engineer V

TDM:DAM:kab

March 29, 1967

DIVISION OF MATERIALS AND TEST, ATLANTA, GEORGIA

BRIDGE SUBSURFACE INVESTIGATION

PROJECT. APD-F-056-1(6)	COUNTY FULTON	DATE <u>3-8-6</u>]
LOCATION ROBERTS DR.	BR.#14	BORING NO.
BENT NOFOOTING_	Ł	GROUND ELEV. 1067,1

ELEV.	BORING LOG	SAM- PLE	BLOW	REMARKS	w	8	Gs	C.	ø	BC	LL	PI	% 200	% CLAY
	GRIELEVI MEDIUM DENSE MULTICOLORED GANDY SILT (MOIST) WEATHERED	- 13	14	SM										
1060	ROCK _	25	60=,6	SM								¢.		
		33	60=17'	5M						.:				
1 1 <u>050</u>		45	60=10	5M .										
	REFUSAL GN ROCK													
								-						
							-							
									·					

DIVISION OF MATERIALS AND TEST, ATLANTA, GEORGIA

BRIDGE SUBSURFACE INVESTIGATION

PROJECT APD-F-056-1(6)	COUNTY FULTON	DATE 3-13-67
LOCATION POBERTS DR.	BR, #14	_ BORING NO2
BENT NO. 2 FOOTING.		
	<u></u>	

. .

PROPOSED FOOTING ELEV.

, - **-** -

____ PARTY CHIEF COGGIN

ELEV.	BORING LOG	SAM- PLE	BLOW	REMARKS	w	3	Gs	C.	ø	BC	LL	PI	% 200	% CLAY
-													-	
		4										1		
1000	GRIELEV.			 										
	MULTICOLORED SANDY SILT													
											-			
1050														
-							N.				:			
	* ••••													
1040							-							
		15	30	SM										
		_		5M			Ĩ							-
1035	REFUSAL			X										
-	ON ROCK													
		:												
		-							-					
													1	

DIVISION OF MATERIALS AND TEST, ATLANTA, GEORGIA

BRIDGE SUBSURFACE INVESTIGATION

PROJECT APD-F-056-1(6) COU	NTY FULTON	DATE <u>3-14-67</u>
LOCATION ROBERTS DR.	BR. #14	BORING NO3
BENT NO. 2 FOOTING RT.		

ELEV.	BORING LOG	SAM- PLE	BLOW	REMARKS	w	8	Gs	C.	ø	BC	LL	PI	% 200	% CLAY
	GRIELEY -	4							•					
1060	MULTICOLORED	 .	•			•								
-			•											
				,										
1050		-												
1045		_												
	DENSE (SAME)	13	53	5M										
		23		SM SM										
10305	(SAME)		60=5	4 N										
	END -DRILLING? -	45	GO¤'00	7,410				-			· .		•	
				v										
			•											
		_		2 2 2						:	2			
•				-	- - -					<i>i</i>				
		•										Ĩ		. 1
						Ì					l			

DIVISION OF MATERIALS AND TEST, ATLANTA, GEORGIA

BRIDGE SUBSURFACE INVESTIGATION

PROJECT APD-F-056-1(6) COUNTY FULTON	DATE 3-14-67
LOCATION ROBERTS DR.	BORING NO. 4
BENT NO. 3 FOOTING LT. OFFSET 3' RT.	GROUND ELEV. 1057,3
PROPOSED FOOTING ELEV.	- PARTY CHIEF COGGIN

SAM % % PLE BLOW ø BORING LOG REMARKS W ELEV. γ Gs C. BC LL. \mathbf{PI} 200 CLAY GR. ELEV. DENSE MULTICOLORED SANDY SILT (MGIST) 1050 1040 15 40 5M VERY DENSE 60=6 5M 25 (SAME) 35 1030 HANMER 43 BOULCED NEATHERED 55 24 SM GINT ROCK 1020 REFUSAL ON ROCK

H.D.490, STATE HIGHWAY DEPARTMENT OF GEORGIA

DIVISION OF MATERIALS AND TEST, ATLANTA, GEORGIA

BRIDGE SUBSURFACE INVESTIGATION

PRIMECT, APD-F-056-1(6) COUNTY FULTON DATE 3-14-67

LOCATION ROBERTS DR. BR#14 BORING NO. 5

BENT NO. 3 FOOTING RT. GROUND ELEV. 1058.1

ELEV.	BORING LOG	SAM PLE	BLOW	REMARKS	w	r	Gs	C.	ø	BC	LL	PI	% 200	% CLAY
						i								
		-												
1060	-	· ·				•								
	GR,ELEV.	-												
	GANDY SILT (MOIST)	- 1												
1050			-										1	
-													- 1 	
	•										1			
1040										-				
	MEDIUM DEUSE -		43 18	5M SM										
030	(BMAE)		۰ <i>۲</i>	5M			-							
	WEATHERED		1	5M 5M										
	RXK -		00×11.	אוכ										
10201	<u> </u>													
	REFUSAL								ſ					2
	-ON ROCK 2 -													
		_								* <u>.</u>				
	-ON ROCK 2 -		P											
			.00			-			,					
			1	I	1	1	l		1	1	(Į	l	1

DIVISION OF MATERIALS AND TEST, ATLANTA, GEORGIA

BRIDGE SUBSURFACE INVESTIGATION

PROJECT APD-F-056-1(6) COUN	TY FULTON	DATE 3-9-67
LOCATION ROBERTS DR.	BR. #14	BORING NO. 6
BENT NO. 4 FOOTING LT.		GROUND ELEV. 1052.6
	······	

PROPOSED FOOTING ELEV. _____ PARTY CHIEF STONE

4

ELEV.	BORING LOG	SAM PLE	BLOW	REMARKS	w	8	Gs	C.	ø	BC	LL	PI	% 200	% CLAY
				•	-			•						
	GR.ELEV.	-												
1050	MULTICOLORED	-												
	SANDY SILT (MOIST)													
1040					· ·			·						
1030-		15	31	5M										
E TULE		20 35	4Z	SM						1				
		43	43	5M										
1020		55	26	SM										
	WEATHERED ROCK -	65	60=,5	5M										
1010	ON ROCK								-					
					1									
	·													
 			ĺ					7		ŀ				
		 		-	2	ļ	-							

H.D.490 STATE HIGHWAY DEPARTMENT OF GEORGIA

DIVISION OF MATERIALS AND TEST, ATLANTA, GEORGIA

BRIDGE SUBSURFACE INVESTIGATION

PROJECT APD-F-056-1(6) COU	NTY FULTON	DATE <u>3-8-67</u>
LOCATION ROBERTS DR.	BR, #14	BORING NO. 7
BENT NO. 4 FOOTING RT.	· · · · · · · · · · · · · · · · · · ·	GROUND ELEV. 1051.6

ELEV.	BORING LOG	SAM PLE	BLOW	REMARKS	w	8	Gs	C.	ø	BC	LL	PI	% 200	% CLAY
1050	GR, ELEV. MEDIUM DENSE MULTICOLORED SANDY SILT													
1040	- (NOIST) -	13												
- <u>1036</u>	-	23 35 45	15 12 24	5M 5M 5M 5M 5M						-				
1020	WEATHERED ROCK DENSE -MULTICOLORED SANDY SILT		602,6											* .
	REFUSAL													

STATE HIGHWAY DEPARTMENT OF GEORGIA H,D.490

DIVISION OF MATERIALS AND TEST, ATLANTA, GEORGIA

BRIDGE SUBSURFACE INVESTIGATION

PROJECT APD-F-056-1(6)	COUNTY FULTON	DATE 3-9-67
LOCATION ROBERTS DR.	BR# 14	BORING NO. 8
BENT NO. 5 FOOTING		- GROUND ELEV. 1057.7
	、	

PROPOSED FOOTING ELEV. _____ PARTY CHIEF STONE

.

ELEV.	BORING LOG	SAM- PLE	BLOW	REMARKS	w	8	Gs	C.	ø	BC	LL	Ы	% 200	% CLAY
1050	GRELEY. MEDIUM DENSE MULTICOLORED SANDY SILT (MOIST) VEATHERED ROCK		-				•	-						
1040		- -					-							•
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		25 35	60×,9' 60 = 5' 60 = 5' 60 = 6'	5M SM				-						
			60=15		-									
	END DRILLING	75	6a=.04	5M										
		•	-											
														•

DIVISION OF MATERIALS AND TEST, ATLANTA, GEORGIA

BRIDGE SUBSURFACE INVESTIGATION

PROJECT APD-F-056-1(6)	COUNTY FULTON	DATE 3-17-67
LOCATION ROBERTS DR.	BR.# 14	BORING NO9
BENT NO. 5 FOOTING	<u>R</u> T.	GROUND ELEV. 1057.4

ELEV.	BORING LOG	SAM- PLE	BLOW	REMARKS	w	8	Gs	С.	ø	BC	LL	PI	% 200	% CLAY
	GRIELEV							· ·						
	BOULDERS													
1050				•										
	DENSE BROWN SANDY SILT WIBOULDERS						akan.							
1040	Weathered Rock												-	
			6005											
- - 		35	60=15' 60=11	5M					ч. Т					
	END DRILLING	1	60=10 ¹											
		1												,
 		-												
- 										-				
							. •							
		-							:					
			-							-				
	. and an	_			1		- [

STATE HIGHWAY DEPARTMENT OF GEORGIA H.D.490

DIVISION OF MATERIALS AND TEST, ATLANTA, GEORGIA

BRIDGE SUBSURFACE INVESTIGATION

LOCATION ROBERTS DR. BR. #14 BURING NO. 10

BENT NO. 6 FOOTING. LT. GROUND ELEV. 1059.5

·····			······					,	·		, 	1	······	t
ELEV.	BORING LOG	SAM PLE	BLOW	REMARKS	w	8	Gs	C.	ø	BC	LL	ы	% 200	% CLAY
	}			<u></u>										
-														
	• •	-			ŀ									
							-							
1 <u>060</u>	MEDIUM DENSE													
	MULTICOLODED SONDY SILT													
	(MOIST	-						-		-				,
1050	NEATHERED ROCK													
-		+												, ,
						1								
	_ · _													
-		<u> </u>												
	ON ROCK?		,				-							
							ĺ	1						
								•				1		
	ي. م													
	anna. Anna.				.								(
						ľ					1			
-														
-														
		-												
-			.							•				
									[
		ł	1	•		•	•	1	•	,				

H.D.490 STATE HIGHWAY DEPARTMENT OF GEORGIA

DIVISION OF MATERIALS AND TEST, ATLANTA, GEORGIA

BRIDGE SUBSURFACE INVESTIGATION

PROJECT APD-F-056-1(6) COU	INTY EULTON	DATE <u>3-9-67</u>
LOCATION POBERTS DR.	BR, #14	BORING NO. 1
BENT NO. 6 FOOTING PT.	Marto	GROUND ELEV. 1059.3

ELEV.	BORING LOG	SAM- PLE	BLOW	REMARKS	w	8	Gs	C.	ø	BC	LL	PI	% 200	% CLAY
 					5									
		-						-						
100.	GRIELEV.	-					-							
	MULTICOLORED SANDY SILT									-				
	(MOIST) WEATHERED													
1050	Rock _		1											
							-							
- 1045											-			
		15	HAMMER	ŚM										
	REFUSAL		inoriceD	жн ү «										
1030	ON ROCK	-												
							-							
			6											
	-													
				•										-
				-							_			
	.	-												-
-		_												

H.D.490 STATE HIGHWAY DEPARTMENT OF GEORGIA

DIVISION OF MATERIALS AND TEST, ATLANTA, GEORGIA

BRIDGE SUBSURFACE INVESTIGATION

PROJECT APD - F-056-1(6)	COUNTY FULTON	DATE 3-8-67
IDCATION POBLETS DR.		BORING NO. 12
BENT NO. 7 FOOTING.	4	GROUND ELEV. 1059.8

ELEV.	BORING LOG	SAM- PLE	BLOW	REMARKS	w	8	Gs	C.	ø	BC	LL	PI	% 200	% CLAY
	GR,ELEV.	-	- -								1 - 1			
	MEDIUM DENSE MULTICOLORED SANDY SILT (MOIST)	15.	18	ъM	-					-				
1050	WEATHERED	2.5	60=,5	*5M									•	
		35	49	ЗM									-	
1040		4-5	5,500	5 M									•	
		1	(cs=.9)					•		•				
1035	Dense Multikolored Silty Sand	65	47.	5M			-							
1020	REFUSAL ON ROCK				· · · ·									
												-		
											• .			
	- 								<u>.</u> .					

STATE HIGHWAY DEPARTMENT OF GEORGIA

INTERDEPARTMENT CORRESPONDENCE

FILE	APD-F-056-1 (6) Fulton Not Let to Contract	OFFICE	Atlanta, Georgia
		DATE	May 9, 1968
FROM	Thomas D. Moreland, State Highway Materia	als Engin	eer

R. L. Chapman, Jr., State Highway Bridge Engineer

SUBJECT

TO

Bridge Foundation Investigation APD-F-056-1 (6) Fulton Roberts Drive Relocation Over North Fulton Expressway Bridge No. 14 Mainline Station 41+50.0

As requested, a bridge foundation investigation has been made at the above listed site. Attached are the results of that work. If any additional information is needed, please notify us.

Very truly yours,

Thomas D. Moreland State Highway Materials Engineer

TDM:DAM:kab

BRIDGE FOUNDATION INVESTIGATION

APD-F-056-1 (6) FULTON ROBERTS DRIVE RELOCATION OVER NORTH FULTON EXPRESSWAY BRIDGE NO. 14 MAINLINE STATION 41+50.0

1. LOCATION-

This bridge is to be located over the proposed North Fulton Expressway approximately 1.2 miles south of the Chattahoochee River crossing. It will be geologically sited in a cut section containing dense residual soils underlain by weathered granite gneiss bedrock.

2. SUBSURFACE DETAILS-

Reference should be made to the attached boring logs and subsurface profile. Some pertinent details are as follows:

a. Hard rock was encountered above the footing elevations at bents 2 and 3. Blasting will be necessary to reach the footing elevations at these bents.

b. Rock cores were taken at bents 2, 3, and 4 at this site.

3. <u>END BENT FOUNDATIONS-</u> Pile bents using steel "H" piles are suitable foundations for the end bents. The maximum recommended design bearings for "H" piles at this site are as follows:

10"	BP	42	55	Tons
12"	BP	53	70	Tons

Estimated tip elevations for the end bent piles are listed below:

<u>Est. Tip Elev.</u>
1029
1010

Plan Driving Objectives - The plan driving objective for the end bent piles is practical refusal after the following minimum tip elevations are reached; 1035.0 at bent 1 and 1025.0 at bent 5.

4. <u>INTERMEDIATE BENT FOUNDATIONS</u>- Spread footings are recommended for the intermediate bent foundations. These footings may be spread on

BRIDGE FOUNDATION INVESTIGATION

APD-F-056-1 (6) FULTON ROBERTS DRIVE RELOCATION OVER NORTH FULTON EXPRESSWAY BRIDGE NO. 14 MAINLINE STATION 41+50.0 Page 2

hard rock as follows:

Bent	<u>Elev.</u>	Max. Safe Design Pressure
2 Lt. 2 Rt. 3 Lt. 3 Rt. 4 Lt. 4 Rt.	1024.0 1024.0 1023.0 1023.0 1017.5 1017.5	5 tsf 5 tsf 5 tsf 5 tsf 5 tsf 5 tsf 5 tsf

David A. Mitchell, Sr. Civil Engineer IV

DAM:JLM:kab May 9, 1968

STATE HIGHWAY DEPARTMENT OF GEORGIA

DIVISION OF MATERIALS AND TEST, ATLANTA, GEORGIA

BRIDGE SUBSURFACE INVESTIGATION

PROJECT <u>APD.F-056-1(6)</u> COUNTY <u>FULTON</u> DATE<u>4-9-68</u> LOCATION <u>ROBERTS DRIVE OVERPASS (RELOCATION</u>BORING NO.______ BENT NO.______FOOTING_______GROUND ELEV. <u>1057.99</u>

PROPOSED FOOTING ELEV. 1051.5 PILE CUTOFIC PARTY CHIEF CRISLER

ELEV.	BORING LOG	SAM- PLE	BLOW	REMARKS	w	8	Gs	C.	ø	BC	LL	PI	% 200	% CLAY	-
	GR. ELEV.											,			-
	DENSE RED SILTY CLAY W/BOULDERS														
	MED. DENSE-DENSE	15	30	SM	22.7								23,1	6.2	
/050-	MLTC, MICACEOUS	25	13	SM	32.2				 				23.8	5.2	
	SANDV SILT	35	15	SM	22.3				1				20.0		
	↓ ► ►		• • TLAIN • FLOWER, I'L • • • • • • FLOWER, I'L • • • • • • • • • • • • • • • • • • •										20,0	<u> </u>	
	s 19 desta 1919 desta 1914 1914 1914 1914 1914 1914 de la se Sal dina Jermin, es quanda a su esta de la calegoria quanda de su e	4.5	60=Z	5M	32.6								20-		
1240-	WEATHERED ROCK				52.9							*****	<u>29.0</u>	4.7	
<u>195 –</u>	WHITE & TAN	55	9	SM	2										
-	MICACEOUS	22		Jri -	27.0			**************************************					<u>28.8</u>	2.9	
	SANDY SILT -	65	77	- + A			• •								
1 <u>0,30</u> -		65		<u>SM</u>	26,7		~						25,4	3.7	
, <u>900</u> -	WEATHERED ROCK										. 1		•••••	·····	
	REFUSAL	:							10" B	-P 42					
 	ON ROCK -				2			o 5	06	ο T	0 8	¢			
							BERS	SHARD	(N TC	els					
1020										·					
							i								
1010-		-				1									
										4					
											ľ				
		I		ļ	J	I	1		I	l	·	1	1	ļ	

H.D.490

H.D.490

STATE HIGHWAY DEPARTMENT OF GEORGIA

DIVISION OF MATERIALS AND TEST, ATLANTA, GEORGIA

BRIDGE SUBSURFACE INVESTIGATION

PROJECT_APD-F-056-1(6) COUNTY_FULTON_____DATE 4-9-68 LOCATION ROBERTS DR. OVERPASS (RELOC.) BORING NO. 2 BENT NO. 2 FOOTING LT. OFFSET 2'LT. #4' FORWARGROUND ELEV. 1062.25

PROPOSED FOOTING ELEV. 1024.0 PARTY CHIEF CRISLER

ELEV.	BORING LOG	SAM- PLE	BLOW	REMARKS	w	8	Gs	C.	ø	BC	LL	PI	% 200	% CLAY
1040 1040 1020	GR. ELEV. DENSE RED SANDY CLAY WI BOULDERS MED DENSE MED DENSE MITC. MICACEOUS SANDY SILT WI WEATHERED ROCK LAYERS WEATHERED ROCK HORNBLENDE GNIESS (SAME) END CORING			A100%-MA70%-M										

H.D.490

STATE HIGHWAY DEPARTMENT OF GEORGIA

DIVISION OF MATERIALS AND TEST, ATLANTA, GEORGIA

BRIDGE SUBSURFACE INVESTIGATION

ELEV.	BORING LOG	SAM- PLE	BLOW	REMARKS	w	8	Gs	C .	ø	BC	LL	PI	% 200	% CLAY
	GR. ELEV													
	DENSE RED											-		
060- 	SANDY CLAY					2							-	
	MED. DENSE -													
1050-	VERY DENSE MLTC, MICACEOUS													
	SANDY SILT WI WEATHERED													
	-ROCK LAYERS -				-				1					
1040-														
<u>Map</u>														
	WEATHERED - ROCK	-										-	1	
10.30	HORNBLENDE	- /		100% RECOVERY			r							
			<u> </u>									:		
	HORNBLENDE \$	_ /		100%			-							
	GRANITE GNIESS			RECOVERY										
	END CORING	-	<u>114</u>							1				
1010-0	CCRING	-												
		_			1						ł			

H.D.490

STATE HIGHWAY DEPARTMENT OF GEORGIA

DIVISION OF MATERIALS AND TEST, ATLANTA, GEORGIA

BRIDGE SUBSURFACE INVESTIGATION

PROJECT APD-F-056-1(6) COUNTY FULTON DATE 4-16-68 LOCATION ROBERTS DR. OVERPASS (RELOC.) BORING NO. 6 BENT ND. 4 FOOTING 47, GROUND ELEV. 1060.15

PROPOSED FOOTING ELEV. 1021.75 PARTY CHIEF CRISLER

ELEV.	BORING LOG	SAM- PLE	BLOW	REMARKS	w	8	Gs	C.	ø	BC	LL	PI	% 200	% CLAY
	GR. ELEN.													
1060- -	DENSE RED CLAY													
	WI BOULDERS WEATHERED ROCK -			:						5				
1050-	DENSE MITC, MICAS, SANDY SILT WEATHERED ROCK													
	MED. DENSE-DENSE MLTC, MICACEOUS													
	SANDY SILT _													
1 <u>040</u> -														
	DENSE-VERYDENSE BROWN & TAN												-	
1030	SANDY SILT													
	VERY DENSE: GRAY	15	60=.2	SM .										
	SANDY SILT WI WEATHERED ROCK WEATHERED ROCK	-25 35	60=,4` 50=,1`	SM										
 	HORNBLENDE GNIESS													,
1010		_		95 % RECOVERY	Ĩ									
6444 6444 6444 6444 644	END													
	_END ^E CORING ->													
1000-				1	1	Į	Į				l	I	ļ	

DIVISION OF MATERIALS AND TEST, ATLANTA, GEORGIA

BRIDGE SUBSURFACE INVESTIGATION

PROJECT <u>APD-F-056-1(6)</u> COUNTY <u>FULTON</u> DATE <u>4-9-68</u> LOCATION <u>ROBERTS</u> <u>DR. OVERPASS (RELOC.)</u> BORING NO. <u>8</u> BENT NO. <u>5</u> FOOTING <u>2 OFF SET 4' LT.</u> GROUND ELEV. <u>1060-53</u>

PROPOSED FOOTING ELEV. 1053.31 PILE CUTOFF PARTY CHIEF CRISLER

ELEV.	BORING LOG	SAM- PLE	BLOW	REMARKS	w	8	Gs	C.	ø	BC	LL	PI	% 200	% CLAY
	GR, ELEV-)	-												
-														
1 <u>260-</u> -	DENSE RED SANDY													
 	CLAY WIBOULDERS													
	DENSE MLTC. MICAST	15	42	5M	28.1								25.4	7.5
· · · · · · ·	CLAYEY SANDY SILT VERY LOOSE BROWN	25	37	.SM	35.3							9.9	40.2	20,3
	FTAN MICACEOUS	33		SM SM	48.4						4-6.9	15.9	45,2	8.81
	SANDY SILT	<u>45</u> 55	10 19	SM SM	42.4 42.8								<u>33,8</u> 34,2	4.4
	MED, DENSE -		1-					 			-			0,0
1040-	(SAME) _	65	20	5M	25.5								21.0	2.8
	- - - 	- 75	15	SM	47.2					······	-		31.0	4,3
	MED, DENSE BROWNE BLACK MICAS, SILT	-85	23	SM	43,3								29,1	7.1
	W WEATHERED ROCK			a ya maya ma angaya ma angaya na angaya n										
NUD -	- VERY DENSE -	95	60	SM	32.2								36.9	6.5
1020	(SAME) 	<i>105</i>	58	5M	34.4		-	11#1.7 www.cht.11#141		-			29.n	5.2
	MED. DENSE - (SAME) -	115	22	SM	46.1								46.0	5,5
1010-	VERY DENSE (SAME) VERY HARD ROCK	•		gapherrowardsandststate=kt			i Viana - vitik vidiki) vita.						1. <u>1</u>	
	REFUSAL S													

HELES - 2494-AL - 1 A 142-221 A	· .					المحمد المحمد الم	and the second	
PROJECT N	vo. <u>19</u>			a. 2019 - 2019 - 19 - 2019 - 2019 - 2019 - 2019 - 2019	-··	_ccu	V7Y	
SRIDGE AT	A H			884.58		ток_	<u></u>	antosa <u>1.6.6</u>
A Q	PILING			LOCATION			summer of the state of the stat	
UT	· · · · · ·	X		NDGE BENT NO. NO.		1	ELEVATIONS. WHOLE FEET ONLY	DIT LINDE FOUNDATION DIVIDICATION REPORT RECOMPLYION SPECIFY, OR DIFFERENCE (INSERT)
H C-I-P PSC		X	/	NO.	<u>Z.</u>	(1) CU	1-0F#	A M.N. PLE CARE STORE
PCC		1		HAMMER		GR	DNND	in Plue The Plevic
OTHER:			1;		LB.	(2) TIP	FINAL	- Lang film Langther
	· · · · · · · · · · · · · · · · · · ·		MKT DE DELMAG D			(3) TIP	ACCEP.	EP-MAG TO A
PLAN DRIV			VULCAN NO.	/		(1) - ((2) =	i otraatijn <u>si</u> Luu vene te
ि PRACTIC	AL REFUSA		UNK-BELT MC			(1) — (3) = <u> </u>	- 2019/2010 - 2019/2019
TONS	······································			· · · · · · · · · · · · · · · · · · ·				07+18)
TEST BEG	AN WITH /	A PENT, OF		FEET BELOW	CUT-OFF	AND .	A TIP ELEVATION OF	WHOL2
'HAMMER Fall (FEET)	NÓ. OF BLOWS	TOTAL PENT. (INCHES)	AVER. PENT. PER BLOW (INCHES)	ELEVATION OF TIP, WHOLE FEET	BEAR IN WHOLE		OCCASIONAL CORRECTE ELEVATION, CA	D T.P ELEVATION, FINAL TIP DER LENGTHS, ETC.
	10	1 199 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	375	1033				
1						<u>, n</u>		
į			<u></u>					
					4	12		
					1		ORDER GING	792 21
		2	. I					
			2	10:38	57	C)		
						<u></u>	 	
			4.5		3		 	
			- 175	1	13 22.			
				<u>j237</u>				
		. 9	3.75			÷		
		- 199 <u>- 19</u> - 199 - 199	- <u>34</u> 35	1	2			
	I		375	1036				
			- 35		ية. بر المعرفية 1.144			
	-	375 073	<u> </u>	1035	2			· · · · · · · · · · · · · · · · · · ·
	+		5 04 3 1 /2 /5	<u> </u>	2			· · · · · · · · · · · · · · · · · · ·
i			1645	1034	j	<u>.</u>		
			· · · · · · · · · · · · · · · · · · ·	1033	- Cor	<u>/</u>		
		7 2 2	145	i		<u></u>		
				1 1 m	2			· · · · · · · · · · · · · · · · · · ·
		4.112	<u>4 75</u> 145	1032	<u> </u>	<u> </u>	1231.77	· · · · · · · · · · · · · · · · · · ·
				میں میں ایک	- 1447 - 3		house manufacture of the second	· · · · · · · · · · · · · · · · · · ·

FOR GRAVITY AND PUTTLE HAMMERS.

1

FOR DIFFERENCIAL DE LOUGLE ACTING STEAM OR AIR HAMMERS. USE MANUFACTURER'S ENERGY RATING.

FOR LINK-BELT, CONVERT BOUNCE CHAMBER PRESSURE READING TO "WH" VALUE BY MEANS OF CHART: USE IN S. A. FORMULA.

 $\mathcal{L}_{i} = \{i,j\}$

i. E

THE PLE DEVICE DETA

TEST PILE NO

PROJECT NO. AND STATISTICS AND AND STATISTICS COUNTY STRUCTURE STATISTICS

н.а. 400-е аб-ев.

• • ..

IAMMER FALL (FEET)	NO. OF BLOWS	TOTAL PENT. (INCHES)	AVER, PENT. PER BLOW (INCHES)	ELEVATION OF TIP, WHOLE FEET	BEARING IN WHOLE TONS	OCCASIONAL CORRECTED THE ELEVATION, FINAL T ELEVATION, ORDER LEASTHS, ETC.
			55	18 5 1		
	· ··· ···	1	: 4°,			
··	··········		- 3 2	······	2.2	• • • • • • • • • • • • • • • • • • •
;		anna a tach a taona R	12,		13.10	
		-2-12-	- 2			
:		3, 11%	25	<u>;</u> ,		
r F	÷	n	• 4	a de la companya de la	3 %	
		<u>9412</u> 312	23		33	
-	,	3/30	E This		; ;	
		i har	1.4	<i>*</i>		
		21/2	, 2.5	1824		
		242				
		2. 4/ 4- 1	122			
			ž	·····	· / ·	
		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1223	1625	- 5-7 - (<u>- 7</u> - (- 7	·
		12 + 7 - 4 - 4, - 4, - 4 	123	9 65 Ger De		;
·····			1. 6. 3	1		
			4 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		5 - C ¹	
		/	1 6 0 0 6 1 1			
		1 311			ur ur	
				<u>~</u>		
		4 4 7 8-		027	art 1 19 and 1	
		1.1.	. *.			
		4 2 f			<u>本 (ス) (1</u>	
		542	. 1 5		<u>4. 3</u>	
			· / 5	ļ	·····	
:					r.) - q.	
					. i	· · · · · · · · · · · · · · · · · · ·
		1/2	.15	/	<u></u>	
:		- 1/2-	. 15	1626	<u> </u>	
	·		- 15	1 4		
		: 72- : 72-	. 15	· · · · · · · · · · · · · · · · · · ·		
·		12/2	· 13 • 15			
			125			
			133		46	
· · · · · ·		1 4	325		46	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· , ť ·			
		1/2	- 67 5	1	61	
		a 5 4 5	:625		67	
		./1.2	4 6 6 24		6.9	
· · · · · ·		4.4	a 6- curro		6.7	· · · · · · · · · · · · · · · · · · ·
		1	i la grad		7.6	
	i	<u>- 1</u> 3		1224	13	12.0.5.0.
		· · · · ·		. ? And the day	/	A Contraction of the second
					····	
	·	•				
						· · · · · · · · · · · · · · · · · · ·
						· · · · · · · · · · · · · · · · · · ·
	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>					

division d Atla	of Materials and anta, Goorgia . survey report		Coun Subr	Proj. F-056-1 (6) County Fulton Submitted by Date Sampled Reported 4-22-6				
Lab. No.				1. 1 m				
Sample No.	1-18	<u>1-2S</u>	1-38	1-4S	1-58	1-65		
Sample from	Roberts	<u>þrive Overp</u>	ass					
Description								
		P	HYSICAL TESTS					
% Passing 21/2" Sieve								
% Passing 1 <u>4</u> 4 Sieve #4	100	100	100	100	100	100		
% Passing No. 10 Slove	95.5	94.4	98.4	98.8	98.3	98.0		
% Passing No. 40 Sieve	71.1	63.2	71.1	69.0	68.5	74.1		
% Passing No. 80 Sieve	48.1	41.3	44.2	54.9	54.3	56.3		
% Pressing No. 200 Slove	23.1	23.8	20,0	29.0	28.8	25.4		
% Clay	6.2	5.2	2.8	4.9	2.9	3.7		
% Total Volume Change								
% Swell								
% Shrinkage								
Maximum Dry Density								
Optimum Moisture	22.7	32.2	22.3	32.6	27.0	25.7		
Liquid Limit								
Plasticity Index	NP	NP.	NP	NP	NP	NP		
Bearing Value, Psi	an generation of the state of the		an agravity were very a low motors and managed a statements					
Shearing Value, Psi			-			and a second		
		CLA	ASSIFICATION					
Sec. 810.01 Mod.	Y Managana (ang sa pang s Mang sa pang sa							
Jnified	SM	SM	SM	SM	SM	SM		

SPECIAL REMARKS:

Variations From Specifications

.

. .

Respectfully submitted______ENGINEER OF MATERIALS & TESTS

STATE HIGHWAY DEPARTMENT OF GEORGIA DIVISION OF MATERIALS AND TESTS

Atlanta, Georgiu

SOIL SURVEY REPORT

Proj. F-056-1 (6)

County Fulton

Submitted by_____

Date Sampled_____Reported 4-22-68

Lab. No.			a ana ana amin'ny fanana amin'ny fanana ana amin'ny fanana amin'ny fanana amin'ny fanana amin'ny fanana amin'ny			
Sample No.	<u>8-1s</u>	8-2S	8 - 3s	8-4S	8-55	8-65
Sample from	Roberts I	rive Overpag	55			
Description					an a	0 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)

PHYSICAL TESTS

		r	MIDICAL INDID			
% Passing 21/2" Sieve		I				
% Passing=1#7 Sieve #4	100	90.7	100	100	100	100
% Passing No. 10 Sieve	90.3	88.2	99.2	97.0	96.7	94.2
% Passing No. 40 Sieve	57.6	67.5	71.0	62.4	63.7	55.1
% Passing No. 60 Slove	45.7	58.6	63.1	52.7	53.7	42.1
% Passing No. 200 Sieve	25.4	40.2	45.2	33.8	34.2	21.0
% Clay	7.5	20.3	18.8	4.4	6.8	2.8
% Total Volume Change		· · · · · · · · · · · · · · · · · · ·	An and an element of the state			
% Swell						
% Shrinkago				····	·····	
Maximum Dry Density			an a			
Optimum Moisture	28.1	35.3	48.4	42.4	42.8	25.5
Liquid Limit		43.4	46.9			~ ~ ~ ~
Plasticity Index	NP	9.9	15.9	NP	NP	NP
Bearing Value, Psi						
Shearing Value, Psi						
******************************** ******	and and and a second		an a			
ЧРС// ЧФФС			-		****	
	1	CLA	SSIFICATION			
Sec. 810.01 Mod.		ann an				
Unified	SM	SM	SM	SM	SM	SM
					· •	
		a and a second	· · · · · · · · · · · · · · · · · · ·		•	
<u>A. A. S. H. O.</u>						1

SPECIAL REMARKS:

Variations From Specifications

. . . .

.

....

A. Promostantat

STATE HIGHWAY DEPARTMENT OF GEORGIA

DIVISION OF MATERIALS AND YESYS Atlanta, Georgia

SOIL SURVEY REPORT

Proj, F-056-1 (6)

County Fulton

Submitted by_____ Romanian 4-22-68 Data Sampled

Date	sampleu	nepon	ed 4-22-00

	1	1	a a construction of the second se		
Lab. No.					
Sample No.	8-75	8-8S	8-9S	 8-11S	
Sample from	Roberts I	rive Overpas	S		a may same to define the second s
Description				_	

PHYSICAL TESTS

				-		
% Passing 21/2" Sieve						
% Passing 11/4" Sieve #4	100	100	100	100	100	1
% Passing No. 10 Slove	96.5	94.0	92.3	97.8	95.2	
% Passing No. 40 Sieve	75.7	66.8	74.1	69.4	89.0	
% Passing No. 50 Slove	59.0	52.3	59.3	58.7	79.6	÷
% Passing No. 200 Sieve	31.0	29.1	36.9	29.7	46.0	
% Clay	4.3	7.1	6.5	5.2	5.5	
% Total Volume Change						
% Swell	lan a na mar an ann an Albahan ann an staid a' m Gàrd Aind Mahaanka rasanna a' Saile					a da antina ang ang ang ang ang ang ang ang ang a
% Shrinkage						
Maximum Dry Density						
<u>- Aptimum</u> Moisture	47.2	43.3	32.2	34.4	46.1	
Liquid Limit						
Plasticity Index	NP	NP.	NP	NP	NP	
Bearing Value, Psi					na man ngangangan ngangangan ngangangan ngangangan ngangangan ngangangan ngangangan ngangangangangangangangang	
Shearing Value, Psi			al - a - a - a - a - a - a - a - a - a -			
	/	CL	ASSIFICATION			
Sec. 810.01 Mod.	n y name i anna fa china 7 ma la part china Mala and a da an					
Unified	SM	SM	SM	SM	SM	
			······································			£
		······································				
		4				
A. A. S. H. O.						

SPECIAL REMARKS:

ţ.

.

.

This report has been produced for the sole and exclusive use of AECOM, HNTB and the Georgia Department of Transportation. Distribution of this report to others shall be for information purposes only. Use and reliance on this report or any of its contents by others is at their sole risks.

ATTACHMENT T

Pitts Road over SR 400 – BSN: 121-0476-0

Project No: MSL00-0001-00(757) PI No. 0001757

TABLE OF CONTENTS

1.	INTRODUCTION	.2
2.	SITE GEOLOGY	.2
З.	HISTORICAL DATA	.2

APPENDICES

Appendix A – Figures Appendix B – Historical Data

1. INTRODUCTION

Existing bridge on Pitts Road over SR 400 (Structure ID 121-0476-0), as shown in Figure 1 of Appendix A, is a four-span structure that crosses over SR 400 at a skew angle. The new longer bridge replaces the existing bridge at approximately 40 feet south of current location to accommodate the SR 400 widening associated with the

project (Project No: MSL00-0001-00(757), PI No.

0001757).

2. SITE GEOLOGY

According to the "Geology of the Greater Atlanta Region" by McConnell and Abrams, 1984, the site as shown in Figure 2 of Appendix A, is generally underlain by the "pfu: Sandy Springs Group" Formation. This geologic formation typically includes a lower unit of intercalated biotite gneiss, mica schist and amphibolite.

3. HISTORICAL DATA

Previous soil boring data at the vicinity of the proposed bridge location was obtained from GDOT OMAT archive files and is included in Appendix B of this report. NOVA is not responsible for the presented historical BFI geotechnical data prepared by others and found in GDOT OMAT archive file storage. Figure 3 of Appendix B represents our understanding of the locations of historical soil borings with respect to the existing structure. The users should review the attached documents and confirm these locations for their use.

APPENDIX A

FIGURES

FIGURE 1 Pitts Road over SR 400 EXISTING BRIDGE SOURCE: GDOT Bridge Inspection Report

- PI No. 0001757

BFI GEOTECHNICAL DATA REPORT Fulton & Forsyth Counties, Georgia NOVA Project Number 2018089 - Task Order 5

FIGURE 2 Pitts Road over SR 400 SITE GEOLOGY SOURCE: McConnell & Abrams, 1984

PI No. 0001757 BFI GEOTECHNICAL DATA REPORT Fulton Counties, Georgia NOVA Project Number 2018089 – Task Order 5

APPENDIX B HISTORICAL DATA

FIGURE 3 Pitts Road over SR 400 HISTORICAL BORING LOCATION PLAN SOURCE: Google Earth Aerial Photos SCALE: Not to Scale

- PI No. 0001757

BFI GEOTECHNICAL DATA REPORT Fulton Counties, Georgia NOVA Project Number 2018089 - Task Order 5 STATE HIGHWAY DEPARTMENT OF GEORGIA

INTERDEPARTMENT CORRESPONDENCE

FILE	PR-5610 D Fulton County Not Let to Contract	OFFICE	Atlanta, Georgia
		DATE	July 27, 1965
FROM	W. F. Abercrombie, Engineer of Materials an	d Tests	
то	C. A. Marmelstein, State Highway Bridge Eng	ineer	

SUBJECT

Bridge Foundation Investigation PR-5610 D Fulton County Pitts Road Over N. Fulton Expressway

As requested, a bridge foundation investigation has been made at the above listed site. Attached are the results of that work. If any additional information is needed, please notify us.

Very truly yours,

W. F. Abercrombie Engineer of Materials and Tests

WFA: TDM: sev

BRIDGE FOUNDATION INVESTIGATION

.

e.

PR-5610 D Fulton County Pitts Road Over N. Fulton Expressway

1.	Location -	This bridge is to be located approximately 2.5 miles south of Roswell, Georgia. It will be geologically located on residual soil and underlying biotite gneiss bedrock of the Carolina Series.
2.	Work Done -	A total of 8 test borings were made at this site with a truck mounted power auger drill. Standard penetration tests were performed in these borings to determine the relative density of soils encountered.
3.	Subsurface Details -	Reference sould be made to the attached boring logs and subsurface profile. Some pertinent details are as follows:
		a) The ground water table was encountered between elevation 1024.5 and 1031.2. Footing excavations should be dry.
		b) Medium to dense soils were encountered near proposed footing elevations.
		c) A loose compressible soil stratum was encountered between elevation 1028.5 and 1031.5 at bent 4 right.
4.	End Bent Foundations -	Steel "H" piles used in pile bents are suitable for end bent foundations. Maximum bearings recommended for "H" piles at this site are as follows:
		10" BP 42 = 55 Tons 12" BP 53 = 70 Tons
		Estimated pile tip elevations for these bearings are as follows:
		Bent Estimated Tip Elevation
		1 1010.0 5 1020.0

These will be chiefly end bearing piles.

5. Intermediate Bent Foundations - Spread footings are recommended for all intermediate bent foundations except bent 4 right. These footings may be safely placed at or below elevation 1037.5 with a maximum safe design pressure of 5 ksf.

BRIDGE FOUNDATION INVESTIGATION

PR-5610 D Fulton County Pitts Road Over N. Fulton Expressway Page 2

The footing at bent 4 right could be spread at elevation 1028.5 with a safe design pressure of 7 ksf. However, a "H" pile footing appears more suitable with the footing near elevation 1037.5. Estimated pile tip elevation for the maximum bearings given in section 3 of this report is 1027.0 at this footing.

6. Danger From Fill Settlement - No danger.

7. Displacement Piles -

Displacement piles were not recommended because of the limited penetration available at bent 4 right and because of possible driving difficulty at bent 5. Irregular pile lengths are also indicated by the dense layered soil and soft rock strata.

> Thomas D. Moreland Highway Materials Engineer

TDM:DAM:sev

7-27-65

	STATE	HIGHW	AY DE	PAF	RTN	1EN	IT (OF	GEC	DRG	iΑ			
	SAM													
	BRID	GE SU	BSURFA	ACE	IN	IVE	STI	G A ⁻	гю	Ν				
	PROJECT PR-56	10 D	COUN	IT Y	Ful	ton				DAT	E <u>7-</u>	7-65		
	LOCATIONPit	t <mark>s Road ove</mark>	r N. Fultor	n Expr	esswa	iy Sta	1,596-	<u>-24</u> B0	DRIN	GN	10	17		
	BENT NO. 1	F0.0T1	NG <u>Cente</u>	er			GI	ROU	ND	ELE	E V]	.056.1	8	
-	PROPOSED FOO	TING EL	EV. End	l Bent				PAR	ΤY	CHI	EF_1	<u>orter</u>		,
EV.	BORING LOG	SAM PLE BLOW	REMARKS	W	*	Gs	С	ø	BC	Ы	LL	200	% CLAY	
	DIVISION OF MATERIALS AND TEST, ATLANTA, GEORGIA BRIDGE SUBSURFACE INVESTIGATION PROJECT <u>PR-5610 D</u> COUNTY <u>Fulton</u> DATE <u>7-7-65</u> LOCATION <u>Pitts Road over N. Fulton Expressway Sta.596+24</u> BORING NO. <u>17</u> BENT NO. <u>1</u> FOOTING <u>Center</u> GROUND ELEV. <u>1056.18</u> PROPOSED FOOTING ELEV. <u>End Bent</u> PARTY CHIEF <u>Porter</u>													

\$

	STATE	HIGHW	AY DE	PAF	RTN	NEN	IT	OF	GE	DRG	ЯA			
	DIVISIO	N OF MA	TERIALS	AND	TEST	, AT	LANT	TA,G	EORG	IA				
BRIDGE SUBSURFACE INVESTIGATION														
	PROJECT PR-56	10 D	COUN	IT Y	Fu	lton				DAT	TE	7-6-65	i	6 4
	LOCATION Pitts	Road Over	N. Fulton	Exp. S	Statio	on 590	6-1-24	B(ORIN	GN	10	18		-
STATE HIGHWAY DEPARTMENT OF GEORGIA DIVISION OF MATERIALS AND TEST, ATLANTA, GEORGIA BRIDGE SUBSURFACE INVESTIGATION PROJECT_PR-5610 D_COUNTY_Fulton DATE_7-6-65 LOCATION_Pitts Road Over N. Fulton Exp. Station 5964-24 BORING NO18 BENT NO2_FOOTING_Right_GROUND ELEV1055.67 PROPOSED FOOTING ELEV1037.50_PARTY CHIEF_Porter_ ELEV. BORING LOG SAM BLOW REMARKS W & Gs C & BC PI LL 200 CL GR. ELEV											67	Eť		
	PROPOSED FOO	TINGEL	EV1	<u>037.5(</u>)		<u> </u>	PAR	TΥ	CHI	E F	Porter	a 	*
ELEV.	BORING LOG	SAM- PLE BLOW	REMARKS	w	8	Gs	С	ø	вс	Ы	LL	200	CLÂY	
	GR. ELEV. 7													

· · · · ·

STATE HIGHWAY DEPARTMENT OF GEORGIA
DIVISION OF MATERIALS AND TEST, ATLANTA, GEORGIA
BRIDGE SUBSURFACE INVESTIGATION
PROJECT PR-5610 D COUNTY Fulton DATE 7-9-65
LOCATION Pitts Road Over N. Fulton Exp. Station 596+24 BORING NO. 19
BENT NO. 2 FOOTING Left GROUND ELEV. 1055.75
PROPOSED FOOTING ELEV. 1037.5 PARTY CHIEF Porter
SAM SAM

х. Х.

EL.EV.	BORING LOG	SAM PLE	BLOW	REMARKS	w	°	Gs	С	ø	вс	PI	LL	% 200	% CLAY
050						•								
104-0	MICACEOUS SILT (MOIST)				-									
1030	DENGE MULT- COLORED MICACEOUS SANDY BILT (MOIST)	-19 -25 -39	. 27										Ţ	
NI-LIJ	SAME (VERY DENSE SAME	-49 -55 -65	49 55 17								-			
	(MEDIUM DENSE)	-75	30								- 			
- - - - - - - - - - - - - 	SAME (DENSE)	-83	28 26		Ť									
	- VERY HARD -	-105	34											
990	DRILLING REFUSAL ON ROCK	-												

STA	TE HIG	HWAY DEPA	ARTM	ENT OF	GEOR	SIA	
	DIVISION OF	MATERIALS AN	D TEST,	ATLANTA,	GEORGIA		
	BRIDGE	SUBSURFAC	E INV	ESTIG/	ATION		
PROJECT_	PR-5610 D	COUNTY	Fultor	1	DA	TE 7 <u>-2-65</u>	
	Pitts Road (Over N. E. Exp.Sta	tion 396+2	24 8	BORING I	NO. 20	

BENT NO. 3 FOOTING Right GROUND ELEV. 1055.20

PARTY CHIEF Maxwell

PROPOSED FOOTING ELEV. 1037.5

200 % CLAY SAM-8 BC W С ø PL LL ELEV. BORING LOG REMARKS Gs GR. ELEV. RED SANDY CLAY BROWN AND 050 RED MICACEOUS SILT 1040 - DENSE BROWN AND WHITE NICACEOUS -15 Zo SANDY 25 4-1 SAPROLITE 35 25 1030 49 17 MEDIUM DENSE -MULTI-COLORED 20 55 MICACEOUS SILT ML. VERY DENSE RED & BROWN 165 62 1020 - SANDY SAPROLITE 75 60 1010 REFUSAL ON. ROCK 1000

STATE HIGHWAY DEPARTMENT	OF GEORGIA
DIVISION OF MATERIALS AND TEST, ATLANT	A, GEORGIA
BRIDGE SUBSURFACE INVESTI	GATION
PROJECT PR=5610 D COUNTY Fulton	DATE7-7-65
LOCATION Pitts Road Over N. Fulton Exp. Station 596+24	BORING NO. 21
BENT NO. 3 FOOTING Left GF	ROUND ELEV. 1055.41
PROPOSED FOOTING ELEV. 1037.5	PARTY CHIEF Porter

.

.

ELEV.	BORING	LOG	SAM PLE	BLOW	REMARKS	W	ช่	Gs	с	ø	BC	Ы	LL	% 200	CLÂY
<u>111</u>		V													
10403	-														
	-		-15 -25	44- 27										·	
1030 N.L. 7	SAME		- 36 - 46 - 56	- 20 17 18											
	(MEDIUM	(DENGE)	-65	6-8											
<u>10201</u> 			-75	6:-5											
	SAW	1	-85	40											
	VERY I DRILL	ING -													
	- ON	ROCK-	_												
- - - - - - - - - - - - - - - - - - -	•														

STATE HIGHW	AY DEPAR	TMENT OF	GEORG	IA	
DIVISION OF MA	TERIALS AND T	EST, ATLANTA,	GEORGIA		
BRIDGE SU	IBSURFACE	INVESTIGA	TION		
PROJECT PR5610 D	COUNTY	Fulton	DAT	E <u>7-8-65</u>	
LOCATION Pitts Road Ove					
BENT NO FOOT					
PROPOSED FOOTING EL	EV. 1037.5	ΡΑ	RTY CHIE	F Porte	<u>r</u>
				•	
	1 1 1				N.

ELEV.	BORING	LOG	SAM PLE	BLOW	REMARKS	w	ຮ່	Gs	с	ø	вс	ΡI	LL	200	CLAY	-
1050	<u>GR. ELE</u> RED Mici GILTY CL (MOI: - RED & E	aceous - ay st)														
	MICACEO SILT (M	SUS		,										-		
1040- 	LOOSE COLOREI MICACE GILT (M	> Lous	-15	12 22 15					-				-	¢		
<u>1030</u>	SAME - (VERY D		-36 - 45	8												
10201			- 55	6-3												
<u>1010</u> -	REFUGAL ON R		- -													
	•••• •		-						-							
	-															

STATE HIGHWAY DEPARTMENT C	OF GEORGIA
DIVISION OF MATERIALS AND TEST, ATLANTA	, GEORGIA
BRIDGE SUBSURFACE INVESTION	GATION
PROJECT PR-5610 D COUNTY Fulton	DATE
LOCATION Pitts Road Over N. Fulton Exp. Station 596+24 ML	BORING NO. 23
BENT NO. 4 FOOTING Left GR	OUND ELEV. 1055.02
PROPOSED FOOTING ELEV. 1037.5 P	ARTY CHIEF Porter

ELEV.	BORING LOG	SAM PLE	BLOW	REMARKS	w	°	Gs	с	ø	BC	РІ	LL	200	CLAY
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	GR. ELEV. RED MICACEOUS GIUTY CLAY (MOIGT) RED AND BROWN MICACEOUS GILT (MOIGT) MEDIVM DENSE MULTI-COLORED MICACEOUS GILT (MOIGT)					•								
1030 1030 1020	VERY DENSE GREY & WHITE MICACEOUS SANDY BILT (MOIGT) MEDIUM DENSE MUCTI-COLORED MICACEOUS SILT (MOIGT) VERY HARD DRILLING REFUSAL	- 30	2] 54 23											
	-													

STATE HIGHWAY DEPARTMENT OF GEORGIA
DIVISION OF MATERIALS AND TEST, ATLANTA, GEORGIA
BRIDGE SUBSURFACE INVESTIGATION
PROJECT PR-5610 D COUNTY Fulton DATE 7-8-65
LOCATION Pitts Road Over N. Fulton Exp. Station 596+24 BORING NO. 24
BENT NO. 5 FOOTING Center GROUND ELEV. 1055.61
PROPOSED FOOTING ELEV. End Bent PARTY CHIEF Porter

H.D. 500-A (16-66)	200 1) x 1		TES	T.PILE	DRIV	ING	DATA	DATE
Nº &								8-29-68
PROJECT N	10.517	$D = C \leq C$	<u> </u>	<u>s at 2</u>		COU	NTY Ful	NOT
BRIDGE AT	Piŋ	<u>'< R</u> (and an	the second state of the	<u>: నిలుద</u> క్ర	ATION_	<u>8481.75</u> TO	STATION_ <u>// 4/8.38</u>
	PILING			LOCATION			SUM	MARY
ΤΤ		x' x	TEST PILE NO.	BRIDGE BENT NO. NO.	1		ELEVATIONS, WHOLE FEET ONLY	DID BRIDGE FOUNDATION INVESTIGATION REPORT RECOMMEND. SPECIFY, O ESTIMATE ? (INSERT
H <u>/0</u> C-I-P		x		12 NO.		(1) CU	T-OFF 10'54	A MIN. PILE TIP ELEV.?
PCC	_1N	_x ′		HAMMER		GR	OUND 13 53 1	A PILE TIP ELEV.? 1010
OTHER:			GRAVITY MKT DE		LB.	(2) TIP	FINAL 1014	ANY PILE
PLAN DRIVI	NG OBJEC	TIVE (PDO)	DELMAG D			-1⊢	ACCEP. 1050	DRIVING TO A
			B.	MODEL		_ (1) (_ (1) ((2) = 40.00 $(3) = 44.50$	DRIVING TO AN ''N'' OF?
REFUSAL		ROCK	OTHER:			∦	Saw Johnstone	OTHER?
TEST BEG							A TIP ELEVATION OF	
*HAMMER		TOTAL	1					(NO. S ONL
FALL (FEET)	NO. OF BLOWS	PENT. (INCHES)	AVER. PENT. PER BLOW (INCHES)	ELEVATION OF TIP, WHOLE FEET	1	RING N TONS	OCCASIONAL CORRECT ELEVATION, C	TED TIP ELEVATION, FINAL TIP
3	10	36	-	10499			1-0	4 9
		24					PLAN	RDER LENTH 52.01
		12	.70	10 6 7				·••
		3	· 80		1			1
		- 7 - 7	<u>. \$5</u>					
		- K	.33		1.	5		
		7 7	.70	1034		7		1039-1719
		7	.70					
		7	.76	-				
		7	. <u>10</u> .70				CRDER	CENGTH = 44
-		7	.70					ling
		7	170	-		7	Cil	
		_6	.60		1			
		6	. 60		19			· · · · · · · · · · · · · · · · · · ·
		5	<u>رۍ ا</u> د ک		21		• .·	
		41		1037	21		1.0	32.84
		4 -	.45			· · · · ·		and the training
		<u> 4</u> 2 5と	155	1031	2 ~		-	
		5/2	<u>ر د ا</u> <u>کک</u>		2 /			,
		5	1.50	1036	21			
3	-10	4± 4-	.AS	1020	23			
OR GRAVITY A	ND POWER H	AMMERS. BLE ACTING ST	EAM OR AIR HAM	MERS. USE MANUFACT	URER'S ENER	GY RATING	1030-00	· · · · · · · · · · · · · · · · · · ·

- ¹

DJECT NO. <u>APD 056-1 (10)</u> CT 2 ⁱ COUNTY FULTON AMMER NO. OF TOTAL AVER. PENT. ELEVATION BEARING OCCASIONAL CORRECTED TIP ELEVATION, FINAL				· ,			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
PALL DOWS PERTONE DEBLOW WINCLE FEEL WHICLE TORS DEBLOW DEBLOW <th< th=""><th>OJECT NO</th><th>. <u>API</u></th><th>0056</th><th>j-1 (10)</th><th>5 12</th><th>, COUN</th><th>TY FULTON</th></th<>	OJECT NO	. <u>API</u>	0056	j-1 (10)	5 12	, COUN	TY FULTON
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	HAMMER FALL		PENT.	PER BLOW	OF TIP.	IN	OCCASIONAL CORRECTED TIP ELEVATION, FINAL ELEVATION, ORDER LENGTHS. ETC.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							102.1,
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-5				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					102.5		· ·
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1			4.4		1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$, 375		2 4	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$, 25		27	· · · · · · · · · · · · · · · · · · ·
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					1027		s
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						i i i i i i i i i i i i i i i i i i i	1026.54
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					1071.		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$,	ר <u>א</u> ו	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		I .			· · · · · ·		•
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				~	·····		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					10 2 5		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	i						· · · · · · · · · · · · · · · · · · ·
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			349				
$ \begin{vmatrix} 3 & 4 & 225 \\ 3 & 3 & 225 \\ 3 & 3 & 225 \\ 3 & 3 & 225 \\ 3 & 35 & 10 2.2 \\ 3 & 35 & 10 2.2 \\ 3 & 35 & 10 2.2 \\ 3 & 36 & 30 \\ 3 & 36 & 30 \\ 3 & 36 & 30 \\ 2 & 255 & 32 \\ 2 & 25 & 32 \\ 2 & 25 & 32 \\ 2 & 25 & 31 & 10 7 1. (p (m)) \\ 2 & 25 & 31 & 10 7 1. (p (m)) \\ 2 & 25 & 31 & 10 7 1. (p (m)) \\ 2 & 25 & 31 & 10 7 1. (p (m)) \\ 2 & 25 & 10 7 1 & \\ 2 & 25 & 10 7 1 & \\ 2 & 25 & 10 7 1 & \\ 2 & 25 & 10 7 1 & \\ 2 & 25 & 10 7 1 & \\ 2 & 25 & 10 7 1 & \\ 2 & 25 & 10 7 1 & \\ 2 & 25 & 10 7 1 & 10 7 1. (p (m)) \\ 2 & 25 & 10 7 & 7 \\ 2 & 25 & 10 7 & 7 \\ 2 & 25 & 10 7 & 7 \\ 2 & 25 & 10 7 & 7 \\ 2 & 25 & 10 7 & 7 \\ 2 & 25 & 7 \\ 2 & 25 & 10 7 & 7 \\ 2 & 25 & 10 7 & 7 \\ 2 & 25 & 10 7 & 7 \\ 2 & 25 & 10 7 & 7 \\ 2 & 25 & 10 7 & 7 \\ 2 & 25 & 10 7 & 7 \\ 2 & 25 & 10 7 & 7 \\ 3 & 35 & 10 19 & 7 & 10 19 \\ 3 & 75 & 10 $	-			32.5		L	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				1325	102.4		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					······································		· · · · · · · · · · · · · · · · · · ·
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<u> </u>				· · · ·	l 7 Q	· · · · · · · · · · · · · · · · · · ·
$ \begin{vmatrix} 3 & .36 \\ 3 & .36 \\ 3 & .36 \\ 3 & .275 \\ 3 & .275 \\ 3 & .36 \\ 2 & .275 \\ 3 & .36 \\ 2 & .275 \\ 2 & .25$					1.5 3 2		1077.1.0.
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						· · · · · · · · · · · · · · · · · · ·	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1				······	30	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			2.74				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-		3		1022	<u></u> సం	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			234				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		·	212			<u> </u>	1021.66
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					102	 	· · · · · · · · · · · · · · · · · · ·
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						<u> </u>	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1020	~	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			23/4				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			2/2				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			2/2				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,25			· · · · · · · · · · · · · · · · · · ·
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 .			125			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			3		1019	30	1019,17
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						 	ļ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1						
3 .30			2		1015.	 !	· · · · · · · · · · · · · · · · · · ·
3 .30	-		3				
			3				
3 130			60			<u> </u>	
		- t	3				

H.D. 500-B (10-66)			internet prover and the	1	~~~~~	اری دست. این دست
,	· · ·	-	IES		DRIVING	DAIA
f,			· .			
						0. <u>3</u> 0F <u>3</u>
PROJECT N	0. <u>A = 5</u>	- 0.56	-1(10)	570	COUN	TY FILTON
HAMMER FALL (FEET)	NO. OF BLOWS	TOTAL PENT. (INCHES)	AVER. PENT. PER BLOW (INCHES)	ELEVATION OF TIP, WHOLE FEET	BEARING IN WHOLE TONS	OCCASIONAL CORRECTED TIP ELEVATION. FINAL THE ELEVATION. ORDER LENGTHS, ETC.
3	10	2 34	,275		32.	1016.66
		21			131	3
		2 - 2	,25	1015	<u> </u>	
	•	2	12.5	1015	<u> </u>	
		13/1	.1 75		4 3 4 3	
		15.2	. 175	· · · · · · · · · · · · · · · · · · ·	<u> </u>	· · · · · · · · · · · · · · · · · · ·
	· · · · ·	1 1/2		-	<u> </u>	8
· · · ·		····	15		<u> </u>	•
			1. U.V.			
			1 5		50	
	-	314	15-6		55	1014.94
:		3/4	.615			
		-7-4 	1375			
		3/4	+ 0 75			
		3/4	1 575		55	
-			•271		66	
		12			60	
:	· · ·	19 41 19		10 14		
		2/4				1014.44
		3/4	• 9 37		1	
		3/14	.1.37			
	1	377 374				
		÷.,	, <u>, , , , , , , , , , , , , , , , , , </u>			
1		3 9	- \$37			
	•	3/8	(69)			· · · · · · · · · · · · · · · · · · ·
	1	3 'n 3 /4	. < 3'			
		1/2	1837			
		-e				
		14	1675		67	
			. 3 12		7,!	
		14	112	·····		
		1.8	2 im			
		18	13:72			
		///	(<u>à 172</u>			
		1/4	• \$17			
		- 1 ¹ R 	1612		71	
	:	5	5 2		<u> </u>	
		5	0	1019	75	1013.98
					[.	
			· · · · · ·			
3	10					

.

. بر من

.

1.D; 500-Λ (10:36)	A		Terret Court Card	TP		DRIVI	NG	DATA	and the second second	DATE
n	6°X							·r	1 44%.	E Comp he
	-							ITY		
RIDGEOT.	19/2	<u>ts R</u>) H- M.	<u> </u>	LIDN	ST#	TION_	3+31,75		TATION 11413, 88
V	ŖILING	nalara kratan di dukumakkan ata mita		LOCA	TION				SUMMA	\RY
UT		x	TEST PILE NO.	BRIDGE NO.	BENT NO	<u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	IN	ELEVATIONS, WHOLE FEET ONI	_Y	DID BRIDGE FOUNDATIO INVESTIGATION REPORT RECOMMEND, SPECIFY, (ESTIMATE ? (INSER
H. <u>10</u> 6	IN. O.D.	x	S.	1.5	PILE NO.	18	(1) CUI	-OFF 10.5	a	A MIN. PILE TIP ELEV.?
		x,]	HAN	IMER	··· <i>··································</i>	GRC	UND 105	3	A PILE TIP ELEV.2 1020
PCC DTHER:			GRAVITY.		1/2019-1.4. La Antonio La Construcció 12.011 in 2.9.9999	in	(2) TIP	FINAL 102	6	ANY PILE
0111ER			MKT DE				Q	101	Sr.	LENGTHS ?
		FIVE (DDA)	DELMAG D					ACCEP.		DRIVING TO A STRATUM?
		TIVE (PDO)	VULCAN NO					2) = <u>34,00</u>		DRIVING TO
] PRACTIC。 团-REFUSAL			LINK-BELT				(1) (3) =	~ 	AN "N" OF ?
_ TONS	- ⊔ĸ 30	VCN	01HER:				NAME: "	the other		OTHER 1 55 TONS
			L				11	<u> </u>		
EST BEGA	\N WITH <i>I</i> 1	V PENT. OF	1.00	<u> </u>		<u> </u>		TIP ELEVATIO	N OF	<u>1053</u> (WHOLE NO.'S OF
HAMMER FALL (FEET)	NO. OF BLOWS	TOTAL PENT, (INCHES)	AVER. PENT PER BLOW (INCHES)		EVATION OF TIP, IOLE FEET	BEAI H WHOLE	N			D TIP ELEVATION, FINAL DER LENGTHS, ETC.
Ċ	0	30	3.0					1	10 9	80106
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10	15	1.2							
	<u></u>	15	<u> </u>		••••••••••••••••••••••••••••••••••••••			PLAN	<u> </u>	ength 14.0
		<u></u> 						L S.M. T		PLACE 33.2
		12	1.2			1			1 1 . 4	1 2000 2002
ĺ		12	1 · Z.		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		HEAT	NO	·
		12	1.2		·	·				
		12	<u>t.c.</u>					· · · · · · · · · · · · · · · · · · ·	·····	
		12	1.2		· · · · ·	_			· · · · · · · · · · · · · · · · · · ·	
i		12	1.2							
		12	1.2			•				
		10	1.0						1	035.56
		3	• %							
		2 2	.273							
		<u> </u>								······································
	<del> </del>	<u> </u>	12:14							6 58 50 50 55
		3 3	<u>. (7.17</u> 13.5						·	633.35
		2	<u></u>			· ·	<u> </u>			
		 	.30			-				
		222	/25					CRDEL		NGTH = 36
		21/2	.2.7-							1
		2/4	(2.2			<u> </u>				
		2/4) 2/4	.127			·		· 	(~~~,	, ) ⁻
·		214	.27.					,	<b>_</b>	· · · · · · · · · · · · · · · · · · ·
		2.2/2	,273	·						-
;	1		<u> </u>			1		ł		
•غ	10	232	12:15							30.97

FOR LINK SELT, CONVERT BOUNCE CHAMBER PRESSURE READING TO "WH" VALUE BY MEANS OF CHART: USE IN S. A. FORMULA.

IL.

	T.	EST PILE N	o. <u> </u>	CON1	INUED. PAGE N	0. <u>2</u> 0F <u>3</u>
ROJECT N	o. <u>A</u> I	<u> 0 0 9</u>	56-1	(16) (1	2COUN	ITY FULTON
HAMMER FALL (FEET)	NO. OF * BLOWS	TOTAL PENT. (INCHES)	AVER. PENT. PER BLOW (INCHES)	ELEVATION OF TIP, WHOLE FEET	BEARING IN WHOLE TONS	OCCASIONAL CORRECTED TIP ELEVATION, FINAL TH ELEVATION, ORDER LENGTHS, ETC.
3	Ιp	22/1	,275	1031	32	1030,74
		7.244	.275	1	32.	10 30,14
			12.0	1031	30	
			, ~; 0	1630		
		<u>. 17</u>	, ") (5			
	<u> </u>	3	.30		30	
		234	• 775	1030	32	
			1275	1029		
					32~	
	<u> </u>	3.1	- <u>130</u> - 20		30	:102.9,60
		3	17.0	1029		· · · · · · · · · · · · · · · · · · ·
<u> </u>	 [	1 3	1 2 C2	(w (m )	1	
		3	100			
		3	430		36	
		21/2	7.5	102%	33	
		21/4	.22		35	
·		2.	12.10		38	
	<u>}</u>	2	-25			
		2	• 20	102.7		
	· · · · · · · · · · · · · · · · · · ·	2	a th lo		[	
		2	17.4		33	
		- 1 - 77-	.17.5		40	
		1/2.	1 bi	1026	43	1025.72
		11/2	125		446	
		1/4	. 12.9			
		1/13	e ( 22 %)		<u> </u>	
		1	210		50	
			.10		50	
		3/4	. 11 7/5		<u>5, c,</u>	
		3/6	14.76			
		3/4	13 - 5 6			,
		<u></u>	1679		55	
		5/8	1047		57	
		5/8	1047	1025		-
		5/3	- 1067			
		519 518	1167			
		Jas.	1507	<u> </u>	<u>57</u> 55	
		9/4	1:75			
		-10	1.02		55.	
					50	
	1		011		50	
		14	1 1 2 3		A.6	
			, 1? 5			
		124	2.5		4%	······································
	_	1	. 1 *	1	43	
			1.14.5	1024	460	
	<u> </u>	1 100	1725			
3	10	12.	<u> </u>	1023	46	1023.42

H.L. 500-8 (10-66)	1.		Prove Supple Contract	Ngana panga pangana pangana pangana Pangana Pangana pangan Pangana pangana	DRIVING	DATA
÷	ז	EST PILE N	10	CONT	INUED. PAGE N	10. <u>5</u> 0F
PROJECT N						NTY FULTON
HAMMER FALL (FEET)	NO. OF BLOWS	PENT. (INCHES)	AVER. PENT. PER BLOW (INCHES)	ELEVATION OF TIP, WHOLE FEET	BEARING IN WHOLE TONS	OCCASIONAL CORRECTED TIP ELEVATION, FINAL TIP ELEVATION, ORDER LENGTHS, ETC.
3.	10	1 /1	1/25	1023	44	1023.31
		1.124	1125			
		1 1/2	125			
		11.44	1125			
		1 1/4	175			
		11/4	1125		<u> </u>	
			10	1023	50	
		1	in	1622	<u> </u>	
		3.4	0713		55	1022.41
		3,9 .	1075			1 22 5- 20 9 20 1
· · · ·		2/11	1.27%			· · · · · · · · · · · · · · · · · · ·
		3/4 3.4	1.079			
		3/2	1.073			
		3/2.	1.07 5			
		3.<1	1 2 73	· · · · · · · · · · · · · · · · · · ·		
	1	3,4				
	<u> </u>	313				
		3 4				
		3 /07	10/13			
	 	214			55	
	{ 	· · · ·	.10	5501	50	1021.66
·			+10	t		
				1621		
į		1	4.15		1	
		1	.15			
			Ц₽		50	
		2/4 3/4	. C. 16		55	
	f	1/2	10-13		65	
		12	. 6 [ 6"		60	
		117	1050			1020.96
		1/17	42.40		Uo	
		10	18 317		63	
		31%	1.2.3.7			
		3/4	11997		63	
		1/4	. 5 2 4		67	
		1/4	1525			
		1/2	11724			
		24	10 20 2			
		14	1 52 5		67	
		19 184 176 176 176	1017		71	
		18	1012			
			1012		71	
		0			78	
	1	<u> </u>		ł		
. 5	10	<u> </u>	<u> </u>	100		
				1021	75	1020.54

505 600 <u>+ 07</u> 358 (37.5 Bend Start Scale P  $\infty$ MRS. FRANCES W. PITTS +06 305 Slope easement 290 + 00 (272' + 93 200 <u>308</u> 63' (7:12) Call Q nich: 222 266 180 758 2984 JOHN THOMAS PITTS 18 制 22° 37' 45" E 12 ъD TYP. HARNON 341 0,105 258 + 57 123 99 144 al la 106' 190 <u> 00</u> 175 Ś L) X X éasemen. 181 J.D. NEWTON Slope easement <u>+ 20</u> 288 +00 303 ROAN 17 0 10 150 + 76 + 00 J.C. & TERSA 402 426 ELIZ DELONG 5221



This report has been produced for the sole and exclusive use of AECOM, HNTB and the Georgia Department of Transportation. Distribution of this report to others shall be for information purposes only. Use and reliance on this report or any of its contents by others is at their sole risks.

# ATTACHMENT U

# Kimball Bridge Road over SR 400 – BSN: 121-0475-0



### **TABLE OF CONTENTS**

1.	INTRODUCTION	2
2.	SITE GEOLOGY	2
З.	HISTORICAL DATA	2

### APPENDICES

Appendix A – Figures Appendix B – Historical Data



. PI No.

### 1. INTRODUCTION

Existing bridge on Kimball Bridge Road over SR 400 (Structure ID 121-0475-0), as shown in Figure 1 of Appendix A, is a four-span structure that crosses over SR 400 at a skew angle. The new bridge replaces the existing bridge at approximately 63 feet south of current location to accommodate the SR 400 widening associated with the

0001757).

### 2. SITE GEOLOGY

According to the "Geology of the Greater Atlanta Region" by McConnell and Abrams, 1984, the site as shown in Figure 2 of Appendix A, is generally underlain by the "pfu: Sandy Springs Group" Formation. This geologic formation typically includes a lower unit of intercalated biotite gneiss, mica schist and amphibolite.

### 3. HISTORICAL DATA

Previous soil boring data at the vicinity of the proposed bridge location was obtained from GDOT OMAT archive files and is included in Appendix B of this report. NOVA is not responsible for the presented historical BFI geotechnical data prepared by others and found in GDOT OMAT archive file storage. Figure 3 of Appendix B represents our understanding of the locations of historical soil borings with respect to the existing structure. The users should review the attached documents and confirm these locations for their use.



# **APPENDIX A**

# FIGURES



FIGURE 1 Kimball Bridge Road over SR 400 EXISTING BRIDGE SOURCE: GDOT Bridge Inspection Report



- PI No. 0001757

BFI GEOTECHNICAL DATA REPORT Fulton NOVA Project Number 2018089 - Task Order 5

ofu cpc Alpha ptu **Project Site** amp Sandy Springs Group (Higgins and McConnell, 1978a: Kline, 1980; pfu this report): Similar to sequence observed in northern Piedmont and cpq at least partially equivalent to Atlanta Group (see text). Includes a fs

at least partially equivalent to Atlanta Group (see text). Includes a lower unit of intercalated biotite gneiss, mica schist and amphibolite (pfu); a middle unit composed of micaceous quartzite, mica schist and graphitic schist (cpq); and an upper unit of graphite-garnetmica schist with lesser amounts of biotite gneiss and amphibolite (fs).

FIGURE 2 Kimball Bridge Road over SR 400 SITE GEOLOGY SOURCE: McConnell & Abrams, 1984



PI No. 0001757 BFI GEOTECHNICAL DATA REPORT Fulton Counties, Georgia NOVA Project Number 2018089 – Task Order 5

# APPENDIX B HISTORICAL DATA



FIGURE 3 Kimball Bridge Road over SR 400 HISTORICAL BORING LOCATION PLAN SOURCE: Google Earth Aerial Photos SCALE: Not to Scale



- PI No. 0001757

BFI GEOTECHNICAL DATA REPORT Fulton NOVA Project Number 2018089 - Task Order 5

# STATE HIGHWAY DEPARTMENT OF GEORGIA

#### INTERDEPARTMENT CORRESPONDENCE

FILE	APD-F-056-1 (6) Fulton Not Let To Contract	OFFICE	Atlanta, Georgia
	, , , , , , , , , , , , , , , , , , ,	DATE	May 29, 1968

FROM Thomas D. Moreland, State Highway Materials Engineer

 $\mathbf{r}\mathbf{o}$ 

R. L. Chapman, Jr., State Highway Bridge Engineer

SUBJECT

Bridge Foundation Investigation APD-F-056-1 (6) Fulton Kimball Bridge Road Bridge No. 24

As requested, a bridge foundation investigation has been made at the above listed site. Attached are the results of this work. If any additional information is needed, please notify us.

Very truly yours,

Thomas D. Moreland State Highway Materials Engineer

TDM: DAM: pml

#### BRIDGE FOUNDATION INVESTIGATION

APD-F-056-1 (6) FULTON KIMBALL BRIDGE ROAD BRIDGE NO. 24

1. LOCATION -

2. SUBSURFACE DETAILS -

This bridge is to be located 4 miles east of Alpharetta, Georgia. It will be geologically sited in the Biotite Gneiss and Schist Formation of the Georgia Piedmont Region.

Reference should be made to the attached boring logs and subsurface profile. Some pertinent details are as follows:

a. The ground water table was at or near elevation 1073.0 during this investigation.

b. Soils present consist chiefly of loose to medium dense sandy silt underlain by very dense shallow rock.

3. END BENT FOUNDATIONS - Pile bents using steel "H" piles are suitable foundations for the end bents. Maximum recommended design bearings for "H" piles at this site are as follows:

10"	ΒP	42	50	Tons
12"	ΒP	53	65	Tons

Estimated pile tip elevations for these bearings are as follows:

<u>BENT</u>	,	EST. TIP ELEV.
1		1078.0
5		1075.0

4. PLAN DRIVING OBJECTIVE -

The PDO for end bent piles should be dynamic bearing after a minimum tip elevation of 1085.0 is achieved.

5. <u>INTERMEDIATE BENT FOUNDATIONS</u>- Spread footings are recommended for intermediate bents. These footings may be placed on very dense sandy silt with a maximum design bearing of 2 T.S.F. as follows:

BENT	ELEVATION
2	1070.0
3	1075.0
4	1070.0

#### BRIDGE FOUNDATION INVESTIGATION

APD-F-056-1 (6) FULTON KIMBALL BRIDGE ROAD BRIDGE NO. 24 Page 2

> The footings at Bents 2 and 3 are below the ground water table; therefore, extreme care should be taken to keep footings dry during construction. Fumping should be done from a sump outside the footing area, and at least 12" deeper than footing excavation. Footing excavation should not be done until immediately before the forms are to be set.

6. <u>DANGER FROM FILL SETTLEMENT</u> - No danger is anticipated.

David A. Mitchell, Sr. Civil Engineer IV

DAM:JCK:pm1 May 29, 1968

### "AS-BUILT" BRIDGE FOUNDATION REPORT

DATA FOR BRIDGE ENGINEER, ATLANTA

PROJECT NO. A Prove MD C C - 1	(1-2) pr 7 - 72	COUNTY
BRIDGE NO. 24 (Lt.) (Rt.) OVER/AT	NORTH FALLYON X	10.64 AT STA. 370 +26,000
DATE OF THIS REPORT	19.72 BY 2000	C. C. C. C. C. T. F. 417 ENGINEER

ELEVATIONS OF BOTTOMS OF FOOTINGS (= BF) & LOWEST AND HIGHEST ELEVATIONS OF PILE TIPS (= LOW, HIGH) (Express this data in whole numbers only - NO DECIMALS)

÷

BENT		FOR FOUNDA	TION BENTS ONL	FOR PILE			
NO.	ELEVATION OF	LEFT FOOTING	AT MIDDLE FOOTING	RIGHT FOOTING	BENTS ONLY LOW HIGH	REMARKS, INCLUDING SURVEY ORIENTATION	
1	BF LOW HIGH						
2	BF		10617 1099			Press Press (1	
ļ	LOW HIGH				,		
3	BF LOW HIGH	1 10 M 200		1013		ţ,	
4	BF LOW HIGH	1 (2) 103 -53		1010			
5	BF		1692				
	LOW HIGH		1.09 1000			TND BENT	
6	BF LOW HIGH						
7	BF LOW HIGH	······	· · · · · · · · · · · · · · · · · · ·				
	BF						
8	LOW HIGH BF						
9	LOW HIGH						
10	BF LOW HIGH	· · · · · · · · · · · · · · · · · · ·					
11	BF						
	LOW HIGH BF						
12	LOW HIGH						
13	BF LOW HIGH					· · · · · · · · · · · · · · · · · · ·	
14	BF						
	LOW HIGH BF					·	
15	LOW HIGH					· · · ·	
16	BF LOW HIGH						
17	BF	······································			·		
	LOW HIGH BF						
18	BF LOW HIGH RF						
19	BF LOW HIGH						
20	BF LOW HIGH			······			
21	RF	**************************************				مریک باری می می از این است از این است (می است (می این این این این این این این این این ای	
<u></u>	LOW HIGH						
22	LOW HIGH		·····				
				<u> </u>			

ORIGINAL TO: BRIDGE ENGINEER "COPY TO : DIVISION OFFICE

9. 10 (3-67)

NOTE: COMPLETE THIS FORM FOR EVERY BRIDGE AS SOON AS THE INFORMATION IS KNOWN AND MAIL PROMPTLY.





are interesting and the second s

Bent Bent Bent I North end EL 1108.16 South end El. 1106.32 Beni 5 North and El. 1098.3 South end E1. 1096.01 Limit of slope paving -Working line (tangent at 5to, 78+08.07) 109.8.3 🖲 , 🖞 Kimball Bridge Road (Construction, exp. p. End bridge B.F.R. Bent 5. Sta. 79+60.20 ET 1104.15 Limit of slope paving 20

H.D.490

# STATE HIGHWAY DEPARTMENT OF GEORGIA

DIVISION OF MATERIALS AND TEST, ATLANTA, GEORGIA

# BRIDGE SUBSURFACE INVESTIGATION

PROJECT APD-F-OUG-1(6)_COUNTY_/////ON									DATE <u></u>						
LOCATION <u>SALARADO @ KIMBALL BRIDGE RD, BK.#24</u> BORING NO/															
BENT NDFOOTINGCLN72R GROUND ELEV. 1087.5										55_	-				
PROPOSED FOOTING ELEV PARTY CHIEF <u>2066///</u>										<u>///</u>					
ELEV.	BORING LOG	SAM- PLE B	LOW RI	EMARKS	w	8	Gs	<b>C</b> .	ø	BC	LL	PI	% 200	% CLAY	-

	l							1				1		
_	GR. ELEV-7													
	A CONTRACT AND A CONTRACTACT AND A CONTRACT AND A C		-									ł		
	RET SANDY CLAYEY													
_	4						ł		i	ł				
	- <i>5/117</i> .	- 111			-22.1-	190,5	-2.72	$\rightarrow$			21.2	-0.3-	4.9,1-	-279
	1		60=.9	~							0-1.0			C-1, 1
	VERY DENSE MITC.	25	160=.9	SM							}	1		
		1		1		i		1 /				í		
- <u>/080-</u>	SANDY SILT	170	60=, 9	S M					1				-	
· _		100	00-1-					/	************************		···· ··· ··· ··· ··· ··· ··· ··· ··· ·	· · ·	· ·	· ·
		1	1					1		1				
_			1					1	ł					
	4							}						· · · ·
	••• ( [*]		1		······		-f							
400b-	REFUSAL		1				1		}					
***	OV ROCK		[				1	10" 5	7.2 C					
											· ···		. • ***********************************	
<u>1070</u> -												•	·	
				•						·				
												an≕ .∎ ana 'ng'an arayan gan	···· ··· ··· ···	
							~ ~	c 5	$\dot{o}$ $\ddot{e}$	0 7			1	
		1	]		$r_0 <$	ं उ	<ul><li>✓ 4</li></ul>	5 9	~ 6	- X	୦ ଟି	5. v		
	L .										:			
					1		BEA	RINE	-INI	-ons				1
														1
														1
1060		1												ł
		$\top$	!											
													· ·	
	-				1									
		1												
	- 	-												
			1 1											1
													·	
													1	
		~											1	
		1 .												
		1												
	••• ••	-											1	
-														
													1	
						i								
		ļ									•			
		T											ŀ	
			}											
						1								
	and the												Į	
		1 1										1	ł	
-							1					l		1
							1							
					1 1		1							1
					] [		l							
		i 1					l							
									}					
								1					1	
+		4				1								
												1		
{					1 1		1			ŀ	1	1		
			i				•	1		•			E E	,

H.D.490

# STATE HIGHWAY DEPARTMENT OF GEORGIA

DIVISION OF MATERIALS AND TEST, ATLANTA, GEORGIA

# BRIDGE SUBSURFACE INVESTIGATION

PROJECT_ <u>AP\$2-F</u>	<u>036-1(6)</u> county <i>FULTON</i>	DATE <u>4-19-68</u>
LOCATION	PRIDEL: TEPA	BORING NO
BENT NO.	FODTINGCENTER	GROUND ELEV. 1097.93
PROPOSED FOOTI	NG ELEV	PARTY CHIEF

ELEV.	BORING LOG	SAM- PLE	BLOW	REMARKS	w	8	Gs	C.	ø	BC	LL	PI	% 200	% CLAY
	GRIELTY											,		
	BOWDER _													
	-													
-000-	MED, DENSF-DENSE					i								
<u>/\</u>	MLTC, MICACEOUS_ SANDY SILT	+												
		-		ML-SM										
	-													
<u></u>														
									•					
	THERY DENSE													
GWR	MLTC, MICACEOUS													
1070	_SANDY SILT	-15	60= + ²	5.41										
		25	50=+7 ¹	5.47										
	_MED. DENSE (SAME)_	35	19	5,61										
	VERY DENSE.	45	60	SM										
106 <u>0</u> -	MITC. MICACEDUS	<u>5</u> 5	60= ,9'	5M										
	SANDY SILT													
		65	50=·3`	SM										
_									ĺ		ŀ			
1050-		75	50=.31	5/11			i							
													ľ	
		85	60=.61	SM						1	1			
-	/ ·													
1240-	END DRILLING													
								Ì						
												ŀ		
							ľ							
		!	1	ł	I	I	l	ļ	I	1	ı	I		

H.D.490

# STATE HIGHWAY DEPARTMENT OF GEORGIA

DIVISION OF MATERIALS AND TEST, ATLANTA, GEORGIA

# BRIDGE SUBSURFACE INVESTIGATION

PROJECT. APD-F	<u> </u>		ULTON	_DATE
LOCATION	BRIDGE	#24	BORI	NG NO. <u>4</u>
BENT ND	FOOTING	<u> </u>	GROUND	) ELEV. <u>/092.86</u>
PROPOSED FOOTI	NG ELEV.	1076.0	PARTY (	

SAM-% % PLE BLOW ø ELEV. BORING LOG REMARKS W r  $\mathbf{Gs}$ С. BC LL PI 200 CLAY SR. ELEV-MED. DENES -000-DENSE MLTC. SANDY SILT ML 080-60=,5 BF. 40,2 5.8 SM 251 15 DENSE-VERY DENSE SW? 25 50=,5' SM MULTICOLORED 1270 60=15' SM 35 14.6 32,0 5,0 SANDY SILT 45 50=.8 SM 14.4 31.7 5.5 55 25 SM1 29,1 36.9 6.0 65 42  $\leq h^*$ 27,1 46.5 6.5 1<u>060-</u> 35 5/1 -75 32.3 5.8 26.1 85 60 ML 25 ML-5P 1050 60 105 60=.5 END DRILLING -1040H.D.490

# STATE HIGHWAY DEPARTMENT OF GEORGIA

DIVISION OF MATERIALS AND TEST, ATLANTA, GEORGIA

# BRIDGE SUBSURFACE INVESTIGATION

PROJECT <u>APD-A-</u>	<u>-056-1 (6)      county                                    </u>	DATE <u>4-17-65</u>
LOCATION	BRIDGE TE 4	BORING ND
BENT NO.	FOOTING RT. OFFSIT 4 RT.	GROUND ELEV. 1089.30
PROPOSED FOOTI	NG ELEV/276.0	- PARTY CHIEF COGGIN

ELEV.	BORING LOG	SAM- PLE	BLOW	REMARKS	w	8	Gs	C.	ø	BC	LL	PI	% 200	% CLAY	•
-												,			
	- 	-								l					
	MED. DENSE MLTC.														
	- SANDY 5117 -								:			:			
<u>(180 –</u> –	• 														
.B.F		15	60 (0- 0)	SM							-				
<u>EWT</u>	- METER SANDY-SILT	1 1	60=,8` 60=,5`												
			50=.7' 60=.5'	5M 5M-SP											
		65	35	ML	-	1									
- - - - - - - - - - - - - - - 		75 	60=.5)	SM										-	
		85	60=.5'	SM											
		95	()= <b>B</b>	SM-SP		1						Ŧ			
250-		_													
	-E//1D	los	60=.3`	SM											
	DAN LING														
1 <u>240</u> =		-													
  											l				

H.D.490

# STATE HIGHWAY DEPARTMENT OF GEORGIA

DIVISION OF MATERIALS AND TEST, ATLANTA, GEORGIA

## BRIDGE SUBSURFACE INVESTIGATION

PROJECT_ <u>APD-F-056-(6)</u> _C	OUNTY_FULTON	DATE <u>475-68</u>
LOCATION		BORING NO. 6
BENT NO. 4-FOOTING	T. OFFSET 3' FWD	GROUND ELEV. 1096.47

PROPOSED FOOTING ELEV. 1016.0 PARTY CHIEF 2006/1/

ELEV.	BORING LOG	SAM- PLE	BLOW	REMARKS	w	8	Gs	C.	ø	BC	LL	PI	% 200	% CLAY	
	CH, 21 (1,)														
	MAR, DEALSH														
	MLTE, MICAS, SANDY SILT														
1222-	- A MY I V diel I - and I am I														ļ
															:
	↓ 	-											-		
															ļ
1080-	• 														I
		1.57		<b>a</b> 1.1											I
<u></u>		15 25	24 20	SM SM											I
-			20 34	5M											1
<u>1070</u> -	-DENSL-MERYDAENST-	<b>—</b>	54 60=12	SM								-			
	(SAME) W/														
			60=,1												:
- 1060			HAMMER BOUKED												
1422														:	
_		85	HAMMER BOUNCED											Ì	
														-	
1050															
	REFUSAL														
	ON ROCK														
	<u> </u>														
	_ ~														
						ļ					ļ	Į	Ĩ		

### H.D.490

# STATE HIGHWAY DEPARTMENT OF GEORGIA

DIVISION OF MATERIALS AND TEST, ATLANTA, GEORGIA

## BRIDGE SUBSURFACE INVESTIGATION

PROJECT, <u>APD-</u>	<u>F-056-7(6)</u> <b>c</b>	DUNTY <u>FULTON</u>	DATE	4-12-53
LOCATION	BRIDGE #	24.	BORING NO	
BENT NO	FOOTING	<u>T. offset s`rtt</u>	- GROUND ELEV	1096.0
PROPOSED FOO		076.0		DGEIN

SAM. % % PLE BLOW ø W ELEV. BORING LOG REMARKS γ  $\mathbf{Gs}$ C. BC LL ы 200 CLAY SR. ELEY,~ LOOSE-MED. DIENSE. 1.1275. SANDY SILT 10907 10801 SIVT_ 15 10 ML 40,0 56.3 9.3 1070 - YERY DENSE 25 60=.6 SM 20.0 31.6 5.2 60=,5' SM 35 19.2 (SAME) W 23,6 4,0 45 60=.91 SM 45.0 43.7 6.0 WENTHERED ROCK 60=.5 SM 55 22.6 29.0 5.1 60-12 65 1<u>060</u>-60=21 75 HAMMER BOUNCED -85 REFUSAL 1050 DN ROCK

H.D.490

# STATE HIGHWAY DEPARTMENT OF GEORGIA

DIVISION OF MATERIALS AND TEST, ATLANTA, GEORGIA

# BRIDGE SUBSURFACE INVESTIGATION

	PROJECT <u>1-22-7</u>	r <u>05</u>	<u>6-77</u>	<u>&gt;</u> cou	NTY	FUL.	<u>20M</u>			·	_DA1	ГЕ —	- /& ·	68
		ź	BR/D	<u> 661 - 202</u>	:J.,	<del></del>			8			0	3	·
	BENT NO. 5	F	ооті	NG.	<u> 137 /</u>	<u>775</u>	175	<u>RT.</u>	GRO	UND	ELE	V/(	<u>9</u> 98.	30
	PROPOSED FOOT			F			, <u> </u>		PAR		mich		<u> </u>	<u>/ Y</u>
ELEV.	BORING LOG	SAM PLE	BLOW	REMARKS	w	8	Gs	Ċ.	ø	BC	LL	PI	% 200	% CLAY
8F -	GR. ALEN	_												
	CLAYEY SILT	_10			30.8	96.5	2.65				49,1	12.0	69.0	45,3
	MED. DENSE RED	-25	23	ML	and president of the particular	anger of the second		y ne martin a pay on car o mático de	1 million 1 a 200 a	4. # 5 w	1 Call Martine			
1290	SANDY SILT _	-30				< .								 -
	-	45	12		-				10"8	P				
	VERY DENSE MLTC, SANDY SILT	= 50	60	SM	ح		o 4 Arinc		o c Tous	0 T	0 6	<b>G</b>		
- <u>280</u> - 		ZS	60= <b>A</b> '	SM	~									
····· 	- - - - -	85	<i>60=</i> ,5'	SM										
= / <i>070</i> _		<u>95</u>	60=.9'	SM		-								
	- <del>7</del> -	105	<i>60=</i> .5'	5M										
= 	END DRILLING													
	<b>-</b> -													
		-												
											Į			

#### FORM H. D. 66



## STATE HIGHWAY DEPARTMENT OF GEORGIA

#### INTERDEPARTMENT CORRESPONDENCE

FILE	FILE APD-056-1 (13) Ct. 2 Dawson Rogers Bridge Company, Inc.		Atlanta, Georgia
	•	DATE	June 30, 1970
FROM	R. L. Chapman, Jr., State Highwa	y Bridge Engi	neer
τo	Mark M. Johnson, Field Division	Engineer, Car	tersville, Ga.
SUBJECT This Data:	Pile Order Lengths - Bridge No. letter acknowledges receipt of th	- ,	
Bridg	e No., Test Pile No.	Bent No.	Pile Type
24	1	1	10 BP 42
This	office concurs in the use of the	following Pil	e Order Lengths:
Bridg	e No. Bent No. Ord	er Length-ft.	Pile Type
24	1	27 .	10 BP 42
* [*]	Yours very t	ruly,	

R. L. Chapman, Jr. State Highway Bridge Engineer

RLCJr./LRP/kg

- cc: T. D. Moreland State Highway Materials Engineer
  - cc: McRay Newsom, A.F.D.E. 21 Claire Drive, S. W. Atlanta, Georgia 30315
  - cc: Rogers Bridge Company, Inc. P. O. Box 87220 (2730 Sullivan Road) College Park, Georgia 30337

cc: J. T. Kratzer

PROJECT NO. APD. 056 (1) (13) CT.2       COUNTY       FLALTON         BRIDGE AT KIM BALL & MORTH FULTON       STATION 7/3/3/2.22. TO STATION 7/9/3/2.22. TO STATION 7/9	E FOUNDATIO TION REPORT D. SPECIFY. C ? (INSER 1085
PROJECT NO. APD 066 (1) (13) CT.2       COUNTY FULTON         BRIDGE AT KIM BALL # NORTH FULTON       STATION 76136.22       TO STATION 779-         PILING       LOCATION       SUMMARY         UTx       TEST       BRIDGE NO.       IN WHOLE FEET ONLY         H. IO BP 42.x       PILE NO.       PILE NO.       IN WHOLE FEET ONLY         PSC       IN	+60.20 E FOUNDATIO TION REPORT D. SPECIFY. C ? (INSER 1085 1079 A
BRIDGE AT       KIAA BALL       4       NORTH       FULTION       STATION       76134.22       TO STATION       774-         PILING       LOCATION       SUMMARY         UT       SUMMARY         IN O.D. X       I       OC         CI-PC       IN       A MIN PILE         CI-PC       GRAVITY.       LB       C	E FOUNDATIO TION REPORT D. SPECIFY. C I D BS
PILINGLOCATIONSUMMARYUTx'TEST PILEBRIDGE NO.BENT NO.IELEVATIONS. IN WHOLE FEET ONLYDID BRIDGE RECOMMENTH.10BP42.2x'IPILE NO.NO.III CUT-OFFI O.A MIN. PILE ESTIMATE .C.I.P.IN. O.D. x'I2.4NO.CIII. CUT-OFFI O.A MIN. PILE ESTIMATE .PSCIN.x'HAMMERGROUNDI I O. "7A MIE?' TIP ELEV.?.A MIN. PILE ELENGTINS .OTHER:SGRAVITY.LB(2) TIP. FINALI O.G.&ANY PILE ELENGTIS?DRIVING TO A STRATUM?PLAN DRIVING OBJECTIVE (PDO)ELMAG D - VULCAN NO.I S.CO.D.G. 3Z*7(1) - (2) = A O. O.ODRIVING TO A STRATUM?PRACTICAL REFUSALINK.BELT MODEL(1) - (3) =Z.7ON NAME:DRIVING TO A STRATUM?TEST BEGAN WITH A PENT. OFI O.O.FEET BELOW CUT-OFF AND A TIP ELEVATION OF (INCHES)OCCASIONAL CORRECTED TIP ELEVATION (INCHES)OO3.6I I O.'O.HAMMER WHOLE FEETOCCASIONAL CORRECTED TIP ELEVATION ELEVATION. ORDER LENGTHS.OO3.6I I O.'O.TOTAL PENT.AVER. PENT. OF TIP WHOLE FEETDEARING WHOLE FONSOCCASIONAL CORRECTED TIP ELEVATI ELEVATION. ORDER LENGTHS.OO3.6I I O.'O.T O.'.T O.'.T O.'.OO3.6I I O.'O.T O.'.T O.'.OO3.	E FOUNDATIO TION REPORT D. SPECIFY. C I D BS
UT       X       '       TEST PILE NO.       BRIDGE NO.       BENT NO.       I       ELEVATIONS. IN WHOLE FEET ONLY       DID BRIDGE INVESTIGA RECOMMENT STRATE.         UT       X       '       PILE NO.       NO.       PILE NO.       I       ELEVATIONS. IN WHOLE FEET ONLY       DID BRIDGE INVESTIGA RECOMMENT STRATE.         C-1-P       IN. O.D. X       '       I       Z 4       PILE NO.       II       Cut-off       I 0.8       A MIN. PILE TIP ELEV.?         PSC       IN       X       '       HAMMER       GROUND       I 0.6       A MIN. PILE TIP ELEV.?         OTHER:       GRAVITY.       LB.       (2) TIP, FINAL       I 0.6       ANY PILE LENGTHS?         PLAN DRIVING OBJECTIVE (PDO)       DELMAG D -       (3) TIP, ACCEP. / 0.81       DRIVING TO A STRATUM?         I DAGK       PRACTICAL REFUSAL       INK-BELT MODEL       (1) - (3) =       2.7       DRIVING TO A N "N' 0F7.         I TONS.       3.5       OTHER:       IINK-BELT MODEL       01       FEET BELOW CUT-OFF AND A TIP ELEVATION OF       0 0.0         TEST BEGAN WITH A PENT. OF       I OC       FEET BELOW CUT-OFF AND A TIP ELEVATION OF       0 0.0'??       THER?         THAMMER FELT       NO. OF       TOTAL PENT, BLOWS       AVER. PENT, (INCHES)       ELEVATION VHOLE FEET <td>TION REPORT D. SPECIFY. C  ? (INSER 1085</td>	TION REPORT D. SPECIFY. C ? (INSER 1085
UI       NO.       BENT       Image: Constraint of the second	TION REPORT D. SPECIFY. C ? (INSER 1085
TT       NO.       IN whole Feet ONLY       Recomments       Recomments       Recomments       Retrint and the set on the set o	1085 1073 A
C-I-PIN. O.D. X/       I       Z-ANOZO       (1) CUT-OFFIO_8       A MIN. PILE TIP ELEV.7_ GROUNDIO_7       A MIN. PILE TIP ELEV.7_ A PILE GROUNDIO_7         PCCINX       GRAVITYLB.       (2) TIP, FINALIO_68       ANY PILE LENGTHS?DELMAG D         OTHER:       GRAVITYLB.       (2) TIP, FINALIO_68       ANY PILE LENGTHS?DELMAG D         PLAN DRIVING OBJECTIVE (PDO)       MKT DEDELMAG D       (3) TIP. ACCEP. <u>/O &amp;I</u> DRIVING TO A STRATUM?_         I PRACTICAL REFUSAL       LINK-BELT MODELOTHER:       (1) - (3) =OLA_OO       DRIVING TO AN "N" OF7.         I REFUSAL       REFUSAL       ROCK       FEET BELOW CUT-OFF AND A TIP ELEVATION OF OR IN MME: <u>DAM Collage CATU</u> OTHER?         TEST BEGAN WITH A PENT. OFIOO       FEET BELOW CUT-OFF AND A TIP ELEVATION OF OF OO       OTHER?         *HAMMER FALL (FEET)       No. OF TOTAL PENT. BLOWS       AVER. PENT. PENT BLOW       ELEVATION OF TIP. UNCHES)       BEARING IN MOLE FEET       OCCASIONAL CORRECTED TIP ELEVATION. IN CHEES         O       3.6       IIIO7       IIIO7       IIIO7       IIIO7	1085 1079 A
PSC       IN       X       HAMMER       GROUND       I $0^{m7}$ A PIET         PCC       IN       X       GRAVITY.       LB.       (2) TIP. FINAL       I O G 8       ANY PILE         OTHER:       GRAVITY.       LB.       (2) TIP. FINAL       I O G 8       ANY PILE         PLAN DRIVING OBJECTIVE (PDO)       MKT DE -       (3) TIP. ACCEP. $2 \mathcal{E}I$ DRIVING TO A         D PRACTICAL REFUSAL       DELMAG D -       VULCAN NO. $1 \mathcal{L} \mathcal{O} \mathcal{O} \mathcal{E}I$ DRIVING TO A         I PRACTICAL REFUSAL       INK-BELT MODEL       (1) - (3) = $2 \mathcal{T}$ DRIVING TO AN "N" OF?         I REFUSAL       ROCK       OTHER:       NAME: $MAME: \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O}$ DRIVING TO AN "N" OF?         TEST BEGAN WITH A PENT. OF       I O O       FEET BELOW CUT-OFF AND A TIP ELEVATION OF       OTHER?       OTHER?         *HAMMER       NO. OF       TOTAL       AVER. PENT.       ELEVATION       BEARING       OCCASIONAL CORRECTED TIP ELEVATION.         'HAMMER       NO. OF       TOTAL       AVER. PENT.       ELEVATION       BEARING       OCCASIONAL CORRECTED TIP ELEVATION.         'HAMMER       NO. OF       36       I I O 7       IN       HA O 77, 37         'A D 36 <t< td=""><td>1 (5 7 3) A ∫ WHOLE</td></t<>	1 (5 7 3) A ∫ WHOLE
PCC       IN.       X       TIP ELEV.1         OTHER:       GRAVITY.       LB.       (2) TIP. FINAL $1 \bigcirc 6 & B$ ANY PILE         PLAN DRIVING OBJECTIVE (PDO)       MKT DE -       (3) TIP. ACCEP. $1 \bigcirc 6 & B$ DRIVING TO A         PLAN DRIVING OBJECTIVE (PDO)       DELMAG D -       (3) TIP. ACCEP. $1 \bigcirc 6 & B$ DRIVING TO A         STRATUM?       DELMAG D -       (1) - (2) = $4 \bigcirc 0 \odot 0$ DRIVING TO A         PRACTICAL REFUSAL       LINK-BELT MODEL       (1) - (3) = $27$ AN "N" OF?         OTHER:       OTHER:       OTHER:       NAME: $27$ AN "N" OF?         TEST BEGAN WITH A PENT. OF       I.O       FEET BELOW CUT-OFF AND A TIP ELEVATION OF $0 \bigcirc 1^{27}$ *HAMMER       NO. OF       TOTAL       AVER. PENT.       ELEVATION       BEARING       OCCASIONAL CORRECTED TIP ELEVATION         (FEET)       BLOWS       TOTAL       AVER. PENT.       ELEVATION       BEARING       OCCASIONAL CORRECTED TIP ELEVATION.         (NCHES)       (INCHES)       WHOLE FEET       WHOLE TONS       OCCASIONAL CORRECTED TIP ELEVATION.         O       36       1107       107.33       107.33	A ∫ WHOLE
MKT DE -       (3) TIP. ACCEP. $10 \ \mathcal{E}$ LENGTHS?         PLAN DRIVING OBJECTIVE (PDO)       DELMAG D -       (1) - (2) = $40,00$ DRIVING TO ASTRATUM?         PRACTICAL REFUSAL       LINK-BELT MODEL       (1) - (3) = $27$ DRIVING TO AN "N" OF?         REFUSAL       ROCK       OTHER:       DRIVING TO AN "N" OF?       DRIVING TO AN "N" OF?         TEST BEGAN WITH A PENT. OF       I.O       FEET BELOW CUT-OFF AND A TIP ELEVATION OF $100^{177}$ OTHER?         *HAMMER       NO. OF       TOTAL       AVER. PENT.       ELEVATION       BEARING       OCCASIONAL CORRECTED TIP ELEVATION. ORDER LENGTHS.         O       36       1107       Ino. 07 36       Ino. 07 37	4 ∫ whole
PLAN DRIVING OBJECTIVE (PDO)       DELMAG D	∫ whole
Image: State of the state	∫ whole
Image: Sector of the sector	∫ whole
Image: Include to the second secon	WHOLE
TEST BEGAN WITH A PENT. OF 1.00         FEET BELOW CUT-OFF AND A TIP ELEVATION OF 100177         *HAMMER FALL (FEET)       NO. OF TOTAL AVER. PENT. PER BLOW (INCHES)       ELEVATION OF TIP. UNCHES       BLOWS (INCHES)         0       0       36       1107       BEARING WHOLE TONS       OCCASIONAL CORRECTED TIP ELEVATION. ORDER LENGTHS.         0       36       1107       IN       BEARING OCCASIONAL CORRECTED TIP ELEVATION. ORDER LENGTHS.	WHOLE
*HAMMER FALL (FEET)       NO. OF BLOWS       TOTAL PENT. (INCHES)       AVER. PENT. PER BLOW (INCHES)       ELEVATION OF TIP. WHOLE FEET       BEARING IN WHOLE TONS       OCCASIONAL CORRECTED TIP ELEVATION ELEVATION. ORDER LENGTHS.         O       O       36       1107       107,33         3       10       46       4.60       1107	
FALL (FEET)     NO. OF BLOWS     PENT. (INCHES)     PER BLOW (INCHES)     OF TIP. WHOLE FEET     IN WHOLE TONS     OCCASIONAL CORRECTED TIP ELEVATI ELEVATION. ORDER LENGTHS.       O     0     36     1107     1-07.33       3     10     46     4.60     107	1 10. 3 014
(FEET)     BLOWS     (INCHES)     (INCHES)     WHOLE FEET     WHOLE TONS     ELEVATION. ORDER LENGTHS.       O     O     36     1107     107,33       3     10     46     4.60	
3 10 46 4.60	ETC.
3 10 46 4.60	2. 1107 4
	test 11 ~ 1,
20 2.00	
<u> </u>	
	1096.05
52.55 26	1076.0.1
52 55 1045	
52,55 20 LENGTH IN PLAC	- *
39.90	
5,50 1094 21 CAST NO. 5560 474,475 22	
	7
4 ,40 1093 25 Climit	N N
4,40 1092 26 1091.75	1091,90
4 40 2.5	
32 ,35 1091 27	<u> </u>
32 /35	
32,35 27	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	·
31,35 23	
32 .35 1089 33	
234 ,275 32	• • · · • • • • • • • • • • • • • • • •
$\frac{25}{5}$ , 25 33	
$\frac{1}{3}$ 10 21 25 1088 33 10221	
	1088.30
FOR GRAVITY AND POWER HAMMERS. For Differential or double acting steam or air hammers. Use manufacturer's energy rating.	
FOR LINK-BELT. CONVERT BOUNCE CHAMBER PRESSURE READING TO "WH" VALUE BY MEANS OF CHART: USE IN S. A. FORMULA.	

.....

TE	Т	PILE	DRIVING	DAA	
• •					

•	TEST	PILE	NO

1

_CONTINUED, PAGE NO.__

_OF_4

こ

(AMMER FALL (FEET)	NO. OF BLOWS	TOTAL PENT. (INCHES)	AVER. PENT. PER BLOW (INCHES)	ELEVATION OF TIP, WHOLE FEET	BEARING IN WHOLE TONS	OCCASIONAL CORRECTED TIP ELEVATION. FINAL ELEVATION, ORDER LENGTHS, ETC.
3	10	ZA	. 225	1048	35	1037,94 1088.09
<u> </u>		21/4	.7.2.5		i i i i i i i i i i i i i i i i i i i	
		2 1/4	.225		35	
		2	.20		38	
		2	120	••••	38	
		13,	. 175		40	
		1 %4		··· ·	4 - 5	· · · · · · · · · · · · · · · · · · ·
		1/4	175	105.77	HU	
			1 2.5	10-51	50	· · · · · · · · · · · · · · · · · · ·
			.15	· · · · · · · · · · · · · · · · · · ·	<u> </u>	
			16			
		- [				
					<b>├</b> ── <b>)</b> .	
					50	
		14	1125		611	
		1 1/2	150		43	· · · · · · · · · · · · · · · · · · ·
	· · · ·	1/2	,150	·····	43	
		1/4-	, 12.5		44	and the best of the second sec
		ł	,10	1086	30	+035,77 1085.9
		1	.10			· · · · · · · · · · · · · · · · · · ·
		<u> </u>	(10			·
			.10			
		ľ	.1.0			
		1	10			· · · · · · · · · · · · · · · · · · ·
		[·	110			
		1 • .	10		50	
1		11/4	1125		46	
		1 Va.	.125			
	· · · ·	11/4	175			• •
		1/2	125	1045		
1		11/4.	.125			
		11/4.	, 12.5	· · · · · · · · · · · · · · · · · · ·	46	
		1/2.	.15		43	
		1Ve	.125			
		1/4	.125		410	· · · · · ·
		1	.10		50	1084.15 1084.30
		1/4	125			
		1/4	.12.5	· · · · · · · · · · · · · · · · · · ·		
		1/2	.15	1684	4 ( <u>,</u> 4 ( <u>,</u> 4 ( <u>,</u> 4 3	
		1/2		• • • • • • • • • • • • • • • • • • •	46	-
		1/4	,125			
	···		125	· · · · · · · · · · · · · · · · · · ·		
_	<b> </b>	1/4	.125	······		
	<b>├ </b>	1/4	. 125		<u> </u>	
_		1/4	12.5			
		1/4 1/a	. 125			
	[	1/2	+125			
	ļ	11/4	112.5		46	
		1/2	.15		43	
		11/2	+ 15			
	ļļ	1/2	15 15	1043	<b>↓↓</b>	· · · · · · · · · · · · · · · · · · ·
$\checkmark$	<u> </u>	1/2	115	<u> </u>		
3	10	1/2	115		4'3	1032.40 1082,55

and the second

....

· ·

), 500-B 10-66)			TET		DRIVING	DA A
	Tr	CT DIE N	•	CONT	INUED PAGE N	0. <u>3</u> 0F <u>4</u>
OJECT N						TY FULTON
AMMER	NO. OF	TOTAL PENT.	AVER. PENT. PER BLOW	ELEVATION OF TIP,	BEARING IN	OCCASIONAL CORRECTED TIP ELEVATION, FINAL
FALL (FEET)	BLOWS	(INCHES)	(INCHES)	WHOLE FEET	WHOLE TONS	ELEVATION, ORDER LENGTHS, ETC.
3	10	1 1/z.	.15	1052	43	+082,29-1082."
	<u>                                     </u>	1/2	,15			
		1/2.	.15		43	· · · · · · · · · · · · · · · · · · ·
	<u> </u>	1/2	,15			
		1/4	,125		46	· · · · · · · · · · · · · · · · · · ·
		1/2	,15		413	
		1 1/2	.15			
		1/2	,15			
		1/2	., 15		·	
		1/2	. 15			· · · · · · · · · · · · · · · · · · ·
		1/2	.15		I	
_		1/2	.15	1051		
		1/2	,15			
		1/2	,15	· .		
	ŀ	1/2	,15			
		1/2.	.15		43	
_ {		1/24	.125		4.6	1933-37 1080.2
		1 1/2 1 1/2	.125		43	
	· · · · · ·	1%	,15		<u> </u>	· · · · · · · · · · · · · · · · · · ·
	<b> </b>	1/2	.15	10 80		· · · · · · · · · · · · · · · · · · ·
		1/2,	.15		43	· · · · · · · · · · · · · · · · · · ·
		13/4	,175		46	· · · · · · · · · · · · · · · · · · ·
		13/4				
· -		13/4	.175		<u>40</u> उह	· · · · · · · · · · · · · · · · · · ·
		2	.20			
		2	,20	1679		
		2	.20			
		2	.20		38	
		214	,225		3.5	-1073.39 1078.2
		2/4	,225		<u> </u>	· · · · · · · · · · · · · · · · · · ·
		21/2	,25	1078	33	
		21/2	.25	121.1.8	<u></u>	
		23/4	,275		35	
		21/2	125	1077	33	
		21/4	.225		35	
		23/3	,275		<u> </u>	
		2.3/A 3	275		32	1001 03 1071
		3 2.74	,30	1.076	<u>30</u> 32	1076.1
		23/4	,275			
		2.3/4	,275	· · · · · · · · · · · · · · · · · · ·	·····	· · · · · · · · · · · · · · · · · · ·
	i	2.34	,275	1075		
		234	.275			
		24	1275			······································
<u>.</u>	<u>v</u>	2-14	.,275		<u>, 32</u>	tom 1 1m in 1
3	10	C.	-30	1074	30	1074,17 1074,32

.

.

*H.D. 506-B (10-66)	• ( _ · · _ •		ΤΕ Τ	PILE D	DRIVING	DA A
		ST PILE N	01	CONT	INUED. PAGE N	040F4
PROJECT N	D. APC	> - 05	6-(1) 1;	575	COUN	ITY FULTON
HAMMER FALL (FEET)	NO. OF BLOWS	TOTAL PENT. (INCHES)	AVER. PENT. PER BLOW (INCHES)	ELEVATION OF TIP, WHOLE FEET	BEARING IN WHOLE TONS	OCCASIONAL CORRECTED TIP ELEVATION. FINAL TIP ELEVATION, ORDER LENGTHS, ETC.
3	10	3	.30	10 44	30	4073.12 1074.07
		3	.30			
		3	.30			
		3	,30			
		उ	.30	1073		· · · · · · · · · · · · · · · · · · ·
·		3	.30	· · · · · · · · · · · · · · · · · · ·		
		3	30	1 1. 444 44	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
		2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	·30 ·30	1072	30	
		2/2	, 2.5	·	33	· · · · · · · · · · · · · · · · · · ·
		21/2	.25		33	
		21/4-	. 2.25		35	
		2.	,20	1671.	3%	
		21/2	1225		35	
	<u> </u>	2	,20		38	
		21/ <u>14</u> 21/4	,2.25		<u>25</u> 35	+0-7-0-55-1070.69
		2	.20		<u> </u>	
		13/2	175	1070	40	
		13/4	. 175		. 640	
		1/2	,15		43	
		1.3/4	.175		40	
		174	.175		40	
		1/2	15		<u>43</u> 43	
			1125	· · · · · · · · · · · · · · · · · · ·	46	· · · · · · · · · · · · · · · · · · ·
		11/4	, 12.5		46	
-		1	.10	1069	60	1068.98
		<u> </u>	10		50	
		34	.075		55	
		ŀ	410		50	
		<u> </u>	.10			· · · · · · · · · · · · · · · · · · ·
			•10		50	· · ·
		. 3/4	110		<u> </u>	1068.34
		34	1075		<u></u>	10 60. 37
		14 114 11 11 11 11 11 11 11 11 11 11 11	1075		55	
		1/2	05		60	
		1/2	105			·
		12	.05			
	· · · ·	NN KING KA VE KO	105		67	
	<u> </u>		· 02.5		<u> </u>	· · · · · · · · · · · · · · · · · · ·
		1/4 1/2	· 025		67	
·····		- Ig	1043	-	7 /	
		1/2	+0.12.5	1868	7 /	1067.90
			0		75	
		0	0	_ · ·		
	4	6	0			
<u> </u>	10	L				

.

BOJECTI	APC	-056	-1(13)	<u>CI2</u>	COUN	NTY FULTO	N
RIDGE AT	<u> </u>	BALL	* N. Ful	ton xwa	YSTATION_7	76+36.22_то в	STATION 79+60.2
PILING				LOCATION		SUMM	IARY
UT			TEST BI PILE NO.	RIDGE BENT NO. NO.	<u>5</u> in	ELEVATIONS, WHOLE FEET ONLY	DID BRIDGE FOUNDATI INVESTIGATION REPOR RECOMMEND, SPECIFY, PSTIMATE ? (INSE
H. ID BP 42 X C-I-PIN. O.D. X			4	A PILE NO	1 9 (1) CUT	1-0FF 1098	A MIN. PILE TIP ELEV.?
	IN	.x		HAMMER		DUND 1097	A PILE TIP ELEV.? 10 M S
			GRAVITYLB.			FINAL 1086	ANY PILE
	·		DELMAG D -		(3) TIP.	ACCEP. 1085	DRIVING TO A
		TIVE (PDO)	VULCAN NO.	ONE 15,000	€3 ^{⊭[†} (t) – (	2) =	STRATUM ?
日 PRACTIO	L EFUSA		LINK-BELT MO	DDEL	(1) (	3) = <u>1/3</u>	DRIVING TO AN "N" OF?
	40				NAME:∠	Som Ogltun EAIT	OTHER?
EST BEG	AN WITH A	A PENT. OF	=	FEET BELOW	CUT-OFF AND	A TIP ELEVATION OF	1098 WHOLE
HAMMER [:] FALL (FEET)	NO. OF BLOWS	TOTAL PENT. (INCHES)	AVER. PENT. PER BLOW (INCHES)	ELEVATION OF TIP, WHOLE FEET	BEARING IN WHOLE TONS BELEVATION, ORDER LE		
3	10	51	1.2	1697		ļ	697.03/
		1 <u>8</u> 24	<u>1.8</u> z, 4	1096			096.03
		91	.95	1093			094.53
		9½ 5	.95				
		5	.5	1091		Length in	090.95
		5	.5 .		1.5	PLACE	
	_	6 5ま	.6	1090	19		089.69
	· · · · · · · · ·		.55	1089			689,20
		4	.4		25		088.74
		4	. 4		2.5		· · · · · · · · · · · · · · · · · · ·
		3	.3	10,88	30	L <	287.74
		3 -					
		3					
		3	• 3		30		
_		·	• 1	1687	50	· · · · · · · · · · · · · · · · · · ·	86.74
			. 1		50		
		불	. 05		60	10	86.49
			. 65			<u> </u>	
		ž	.65		66		
		4	.625	1086	67	10	86.36
		4	102.5		67		
			.0125		71		86.32
		- 12	16125	1086	71		96.30
			~		25	• • • • •	
		0	<u> </u>			ORDER LES	<i>f</i>

/



# SPT HAMMERS ENERGY CALIBRATIONS

# S&ME- CME 55 (SN 328245)



Report of SPT Energy Measurements S&ME CME 55 Truck (SN 328245) Black River, North Carolina S&ME Project No. 6235-17-020

#### PREPARED FOR

North Carolina Department of Transportation Geotechnical Engineering Unit 1589 Mail Service Center Raleigh, North Carolina 27699

#### PREPARED BY

S&ME, Inc. 9751 Southern Pine Boulevard Charlotte, NC 28273

September 20, 2018



September 20, 2018

North Carolina Department of Transportation Geotechnical Engineering Unit 1589 Mail Service Center Raleigh, North Carolina 27699

Attention: Dr. Shunyi (Chris) Chen, Ph.D., P.E.

Cc: Ms. Cheryl A. Youngblood, L.G.

Reference: Report of SPT Energy Measurements S&ME CME 55 Truck (SN 328245) Charlotte, North Carolina S&ME Project No. 6235-17-020

Dear Dr. Chen:

We have completed the Standard Penetration Test (SPT) energy measurements on the automatic hammer mounted on our CME 55 truck-mounted drill rig with a serial number of 328245. This service was performed by our Mr. Robert E. Kral, P.E. on September 6, 2018. SPT energy testing was performed in general accordance with ASTM D4633 and the most recent revision of the North Carolina Department of Transportation (NCDOT), Geotechnical Engineering Unit's requirements. The testing procedures, equipment used during testing, and detailed results are presented in this report.

# 1.0 Dynamic Testing Methodology

Testing was performed using a model PAX (Serial No. 3733L) Pile Driving Analyzer[™] (PDA) manufactured by Pile Dynamics, Inc. The PDA was used to record and interpret data from two piezoresistive accelerometers (Serial Nos. K10181 and K10182) bolted to a 2-foot long AWJ drill rod (SN203) internally instrumented with two strain transducers. The instrumented AWJ drill rod has a cross-sectional area of 1.20 square inches, an outside diameter of approximately 1.75 inches, and an inside diameter of 1.25 inches at the gauge location. The accelerometers and strain gauges, which are mounted on opposing axis near the middle of the instrumented rod, monitor acceleration and strain for each hammer blow. The analyzer converts the data to velocities and forces and computes the maximum transferred hammer energies with the "EFV" method described in ASTM D4633. Preliminary results are recorded and displayed in real time for each blow. Calibration sheets for the accelerometers and the instrumented rod are included in the Appendix.



# 2.0 Testing and Observations

S&ME personnel were on site on September 6, 2018, to observe and perform high-strain dynamic testing during SPT sampling on the CME 55 truck-mounted drill rig operated by T. Miller of S&ME. The measurements were taken during drilling operations for the NCDOT I-5986A project in Black River, North Carolina. High-strain dynamic testing was performed at Boring EB1-Y10, the Field Borelog (not redlined) is attached in Appendix II. SPT energy measurements were recorded during three intervals at depths of approximately 43½, 48½, and 53½ ft below the existing ground surface. The information presented in the tables below summarizes the equipment tested and tooling used during the SPT energy measurements.

## Table 2-1: Drill Rig Information

Manufacturer	CME
Model	55
Serial Number	328245
Operator	T. Miller
Carrier	Truck

### Table 2-2: Hammer Information

Model / Type	CME / Auto
Serial Number	328245
Anvil Height (inches)	11.5
Anvil Diameter (inches)	2.5
Drop Height (inches)	30
Ram Weight (pounds)	140
Ram Serial Number	N/A

### Table 2-3: Drilling and Instrumented Rod Information

Drill Rod Type	LMA
OD (inches)	1.75
ID (inches)	1.25
Cross-Sectional Area (in ² )	1.20
Typical Lengths (feet)	5
Instrumented Rod Type	AWJ (SN 203)
OD (inches)	1.75
ID (inches)	1.25
Cross-Sectional Area (in ² )	1.20
Total Instrumented Rod Length (feet)	2.00
Length Below Gages (feet)	0.75
Split-Spoon Length (feet)	2.85



Report of SPT Energy Measurements S&ME CME 55 Truck (SN 328245) Charlotte, North Carolina S&ME Project No. 6235-17-020

# 3.0 Dynamic Testing Results

The total rod length from the instrumentation to the tip of the split-spoon sampler was determined by adding 3.60 ft to the required drill rod length at each sample depth. Based on the test data, the automatic hammer on the CME 55 truck-mounted drill rig operated at a rate of about 51.4 to 52.0 blows per minute (bpm) during dynamic testing. The measured transferred hammer energy (EFV) was generally in the range of about 292.1 to 325.6 ft-lbs, which corresponds to Energy Transfer Ratio (ETR) values of about 83.5 to 93.0%, respectively. The SPT Energy Measurement Data Summary tables in the Appendix present the test data from every hammer blow at each sampling interval along with representative force and velocity traces for each test interval. The reported blow counts, obtained by the drill rig personnel, and a summary of the test data and average computed hammer energy and transfer ratio values are provided in Table 3-1. Plots and tables of the following are also included in the Appendix and present the test data with depth for each test interval:

• Penetration vs. BLC

- Penetration vs. CSX
- Average ETR vs. Rod Length
- ETR vs. Rod Length

• Penetration vs. EFV

Penetration vs. FMX

- Penetration vs. VMX
- Penetration vs. ETR

Table 5-1: Summary of Dynamic Testing Results								
Data Set ID	Sample Depth (ft)	Drill Rod Length (ft)	Instrumentation to Sampler Tip Length (ft)	Blows per 6" Increment / N-value	Soil Sample Description (Piedmont Residual)	Avg. BPM	Avg. EFV (ft-Ibs)	Avg. ETR (%)
1	43½ - 45	45	48.6	2-3-5 / 8	CLAY	51.8	310.6	88.7
2	48½ - 50	50	53.6	7-11-15 / 26	CLAY	51.7	322.1	92.0
3	53½ - 55	55	58.6	7-12-15 / 27	CLAY	51.6	312.1	89.2
					Overall Average	51.7	316.2	90.3

### Table 3-1: Summary of Dynamic Testing Results

The average hammer rate, transferred energy, and transfer ratio were calculated for each depth interval. Per ASTM D4633, only the blows from the final foot of each sample interval (i.e. the blows that determine the N-value) were included when computing the average values shown in Table 3-1. The overall average transferred hammer energy for the automatic hammer on the CME 55 truck-mounted drill rig (for all the depth intervals tested) was 316.2 foot-pounds, with an average ETR of 90.3%.



Report of SPT Energy Measurements S&ME CME 55 Truck (SN 328245) Charlotte, North Carolina S&ME Project No. 6235-17-020

# 4.0 Limitations of Report

This report has been prepared in accordance with generally accepted geotechnical engineering practice for specific application to this project. The conclusions contained in this report were based on the applicable standards of our profession in this geographic area at the time this report was prepared. No other warranty, express or implied, is made.

# 5.0 Closing

S&ME appreciates the opportunity to provide this report to the North Carolina Department of Transportation, Geotechnical Engineering Unit. Please let us know if you have any questions concerning this report.

Sincerely,

S&ME, Inc.

Kristen H. Hill, L.G., P.E Principal Engineer



Transportation Services Project Manager N.C. Registration No. 042642

Appendices:

- Appendix I CME 55 Truck (SN 328245) SPT Energy Measurements Summary Plots and Tables
- Appendix II SPT Energy Evaluation Form (Field Log) and Field Borelog
- Appendix III Instrumented Rod and Accelerometer Calibration Sheets
- Appendix IV Certificate of Proficiency

Appendices

Appendix I







Pile Dynamics, Inc. Page 1 of 6 SPT Analyzer Results PDA-S Ver. 2018.30 - Printed: 9/20/2018 CME 55 (328245) EB1-Y10 Test date: 9/6/2018 REK EB1-Y10 AR: 1.20 SP: 0.492 k/ft3 in^2 LE: 48.60 ft EM: 30000 ksi WS: 16807.9 ft/s



F1 : [203 AWJ-1] 212.63 PDICAL (1) FF1 F2 : [203 AWJ-2] 212.32 PDICAL (1) FF1 A1 (PR): [K10181] 356 mv/6.4v/5000g (1) VF1 A2 (PR): [K10182] 368 mv/6.4v/5000g (1) VF1

BPM: Blows/M FMX: Maximu VMX: Maximu DMX: Maximu	im Force im Velocit	·					DFN: EFV:	Final Displ Maximum		
BL#	LP	BC	BPM	FMX	VMX	DMX	CSX	DFN	EFV	ETR
	ft	/6"	bpm	kips	ft/s	in	ksi	in	ft-lb	%
1	43.75	2	1.9	26	20.5	3.00	21.7	3.00	317.8	90.8
2	44.00	2	51.9	26	20.0	3.16	21.5	3.00	309.6	88.4
3	44.17	3	51.8	26	21.0	2.09	21.7	1.99	292.1	83.5
4	44.33	3	51.9	24	20.8	2.00	20.3	2.00	311.9	89.1
5	44.50	3	51.9	24	20.6	2.00	20.3	2.00	312.9	89.4
6	44.60	5	51.9	25	21.4	1.47	21.0	1.20	314.3	89.8
7	44.70	5	52.0	26	21.6	1.37	21.6	1.20	312.7	89.3
8	44.80	5	51.6	26	21.6	1.29	21.3	1.20	311.8	89.1
9	44.90	5	51.9	25	21.5	1.22	21.2	1.20	314.0	89.7
10	45.00	5	51.6	26	21.8	1.20	21.5	1.20	315.2	90.1
		Average	51.8	25	21.3	1.58	21.1	1.50	310.6	88.7
		Std Dev	0.1	1	0.4	0.36	0.5	0.39	7.1	2.0
		Maximum	52.0	26	21.8	2.09	21.7	2.00	315.2	90.1
		Minimum	51.6	24	20.6	1.20	20.3	1.20	292.1	83.5
				N-	value: 8					

Sample Interval Time: 10.40 seconds.

Page 2 of 6 PDA-S Ver. 2018.30 - Printed: 9/20/2018

CME 55 (328245) REK	EB1-Y10 Test date: 9/6/2018
EB1-Y10	
AR: 1.20 in^2	SP: 0.492 k/ft3
LE: 53.60 ft	EM: 30000 ksi
WS: 16807.9 ft/s	



## F1 : [203 AWJ-1] 212.63 PDICAL (1) FF1 F2 : [203 AWJ-2] 212.32 PDICAL (1) FF1

A1 (PR): [K10181] 356 mv/6.4v/5000g (1) VF1 A2 (PR): [K10182] 368 mv/6.4v/5000g (1) VF1

BL#	LP	BC	BPM	FMX	VMX	DMX	CSX	DFN	EFV	ETR
	ft	/6"	bpm	kips	ft/s	in	ksi	in	ft-lb	%
1	48.57	7	1.9	27	18.2	1.45	22.8	0.86	318.1	90.9
2	48.64	7	52.0	28	19.2	1.01	23.1	0.86	316.0	90.3
3	48.71	7	51.5	28	19.1	0.88	23.1	0.86	317.3	90.7
4	48.79	7	51.9	28	19.0	0.86	23.2	0.86	319.5	91.3
5	48.86	7	51.7	28	19.2	0.86	23.5	0.86	320.0	91.4
6		7	51.5	28	19.3	0.86	23.3	0.86	322.9	92.3
7		7	51.8	28	18.4	0.86	23.1	0.86	317.7	90.8
8		11	51.8	28	18.8	0.73	23.4	0.55	318.0	90.9
9		11	51.6	28	19.5	0.72	23.6	0.55	320.1	91.5
10	-	11	51.8	28	19.4	0.72	23.4	0.55	320.9	91.7
11		11	51.6	29	19.0	0.72	24.1	0.55	322.2	92.1
12		11	51.7	28	19.5	0.69	23.3	0.55	322.1	92.0
13		11	51.7	29	19.2	0.69	23.9	0.55	322.0	92.0
14		11	51.6	28	19.1	0.66	23.7	0.55	322.7	92.2
15		11	51.7	29	19.3	0.63	23.8	0.55	322.1	92.0
16		11	51.7	28	20.1	0.63	23.7	0.55	325.6	93.0
17		11	51.8	29	19.5	0.62	24.1	0.55	323.8	92.5
18		11	51.5	28	19.3	0.61	23.5	0.55	320.2	91.5
19		15	51.8	29	19.8	0.61	24.0	0.40	322.4	92.1
20		15	51.7	28	20.3	0.60	23.3	0.40	323.2	92.4
21		15	51.7	28	19.6	0.60	23.7	0.40	324.2	92.6
22		15	51.7	29	20.3	0.58	23.8	0.40	322.8	92.2
23		15	51.7	28	19.9	0.57	23.5	0.40	324.5	92.7
24		15	51.8	28	20.0	0.56	23.5	0.40	320.9	91.7
25		15	51.5	28	19.5	0.56	23.6	0.40	324.3	92.7
26		15	51.6	28	19.7	0.55	23.6	0.40	323.6	92.4
27		15	51.7	28	19.5	0.53	23.2	0.40	320.8	91.7
28		15	51.6	28	19.6	0.52	23.2	0.40	319.8	91.4
29		15	51.5	28	19.2	0.52	23.3	0.40	317.7	90.8
30		15	51.7	28	19.1	0.52	23.3	0.40	321.2	91.8
31	49.93	15	51.8	28	19.9	0.52	23.7	0.40	322.8	92.2

Page 3 of 6 PDA-S Ver. 2018.30 - Printed: 9/20/2018

32	49.97	15	51.7	29	19.7	0.51	23.9	0.40	324.3	92.7
33	50.00	15	51.7	29	19.9	0.49	23.9	0.40	322.5	92.2
		Average	51.7	28	19.6	0.60	23.6	0.46	322.1	92.0
		Std Dev	0.1	0	0.4	0.07	0.3	0.07	1.9	0.5
	N	laximum	51.8	29	20.3	0.73	24.1	0.55	325.6	93.0
	Ν	/linimum	51.5	28	18.8	0.49	23.2	0.40	317.7	90.8
				N-\	value: 26					

Sample Interval Time: 37.08 seconds.

Page 4 of 6 PDA-S Ver. 2018.30 - Printed: 9/20/2018

CME 55 (328245) REK	EB1-Y10 Test date: 9/6/2018
EB1-Y10	
AR: 1.20 in^2	SP: 0.492 k/ft3
LE: 58.60 ft	EM: 30000 ksi
WS: 16807.9 ft/s	



## F1 : [203 AWJ-1] 212.63 PDICAL (1) FF1 F2 : [203 AWJ-2] 212.32 PDICAL (1) FF1

A1 (PR): [K10181] 356 mv/6.4v/5000g (1) VF1 A2 (PR): [K10182] 368 mv/6.4v/5000g (1) VF1

BL#	LP	BC	BPM	FMX	VMX	DMX	CSX	DFN	EFV	ETR
	ft	/6"	bpm	kips	ft/s	in	ksi	in	ft-lb	%
1	53.57	7	1.9	27	20.7	0.96	22.1	0.86	293.0	83.7
2	53.64	7	51.5	27	21.0	0.95	22.4	0.86	307.2	87.8
3	53.71	7	51.6	27	20.8	0.95	22.4	0.86	315.3	90.1
4	53.79	7	51.7	27	20.7	0.92	22.7	0.86	314.6	89.9
5	53.86	7	51.5	27	21.1	0.87	22.4	0.86	318.6	91.0
6	53.93	7	51.7	27	21.3	0.86	22.4	0.86	315.1	90.0
 7	54.00	7	51.6	27	21.6	0.86	22.6	0.86	319.7	91.3
8	54.04	12	51.8	27	21.3	0.65	22.8	0.50	311.7	89.1
9	54.08	12	51.7	27	21.5	0.67	22.4	0.50	318.0	90.8
10	54.13	12	51.5	27	21.5	0.65	22.3	0.50	317.6	90.7
11	54.17	12	51.7	27	21.7	0.64	22.7	0.50	318.4	91.0
12	54.21	12	51.6	26	21.1	0.63	21.4	0.50	315.1	90.0
13	54.25	12	51.5	27	21.3	0.63	22.4	0.50	317.8	90.8
14	54.29	12	51.6	26	21.5	0.62	21.9	0.50	318.5	91.0
15	54.33	12	51.6	26	21.2	0.58	21.9	0.50	310.5	88.7
16	54.38	12	51.7	26	21.2	0.57	22.1	0.50	310.7	88.8
17	54.42	12	51.5	26	21.1	0.61	21.6	0.50	321.4	91.8
18	54.46	12	51.8	26	21.1	0.60	22.0	0.50	319.2	91.2
19	54.50	12	51.5	26	21.1	0.58	21.7	0.50	317.1	90.6
20	54.53	15	51.4	27	21.2	0.55	22.3	0.40	313.7	89.6
21	54.57	15	51.5	26	20.6	0.51	21.9	0.40	302.5	86.4
22	54.60	15	51.7	27	21.2	0.53	22.5	0.40	310.3	88.7
23	54.63	15	51.8	26	21.1	0.53	21.7	0.40	309.3	88.4
24	54.67	15	51.5	27	21.2	0.52	22.2	0.40	308.9	88.3
25	54.70	15	51.5	26	20.9	0.55	21.3	0.40	314.4	89.8
26	54.73	15	51.4	26	20.9	0.54	21.5	0.40	312.0	89.1
27	54.77	15	51.8	26	20.6	0.51	21.8	0.40	306.2	87.5
28	54.80	15	51.6	26	20.8	0.50	21.8	0.40	303.0	86.6
29	54.83	15	51.6	26	20.7	0.51	21.3	0.40	307.7	87.9
30	54.87	15	51.5	26	20.5	0.51	21.4	0.40	307.9	88.0
31	54.90	15	51.7	26	20.7	0.50	21.5	0.40	307.3	87.8

Page 5 of 6 PDA-S Ver. 2018.30 - Printed: 9/20/2018

32	54.93	15	51.5	26	20.7	0.50	21.6	0.40	310.0	88.6
33	54.97	15	51.6	26	20.6	0.50	22.0	0.40	308.8	88.2
34	55.00	15	51.7	27	20.8	0.50	22.4	0.40	308.6	88.2
		Average	51.6	26	21.0	0.56	21.9	0.44	312.1	89.2
		Std Dev	0.1	1	0.3	0.06	0.4	0.05	5.0	1.4
	Ν	/laximum	51.8	27	21.7	0.67	22.8	0.50	321.4	91.8
	1	Minimum	51.4	26	20.5	0.50	21.3	0.40	302.5	86.4
				N-v	alue: 27					

Sample Interval Time: 38.32 seconds.

#### Summary of SPT Test Results

Project: CME 54 BPM: Blows/Mi FMX: Maximum VMX: Maximum DMX: Maximum	nute n Force n Velocity		6/2018								CSX: Compre DFN: Final Di EFV: Maximu ETR: Energy	splacement im Energy	
Instr.	Start	Final	Blows	Ν	N60	Average	Average	Average	Average	Average	Average	Average	Average
Length	Depth	Depth	Applied	Value	Value	BPM	FMX	VMX	DMX	CSX	DFN	EFV	ETR
ft	ft	ft	/6"			bpm	kips	ft/s	in	ksi	in	ft-lb	%
48.60	43.50	45.00	2-3-5	8	12	51.8	25	21.3	1.58	21.1	1.50	310.6	88.7
53.60	48.50	50.00	7-11-15	26	39	51.7	28	19.6	0.60	23.6	0.46	322.1	92.0
58.60	53.50	55.00	7-12-15	27	40	51.6	26	21.0	0.56	21.9	0.44	312.1	89.2
			Ov	erall Average	e Values:	51.7	27	20.4	0.71	22.5	0.59	316.2	90.3
				Standard D	Deviation:	0.1	1	0.8	0.37	1.0	0.38	6.8	1.9
			Ove	erall Maximu	ım Value:	52.0	29	21.8	2.09	24.1	2.00	325.6	93.0
			Ov	erall Minimu	ım Value:	51.4	24	18.8	0.49	20.3	0.40	292.1	83.5



Appendix II



## **SPT Energy Evaluation Form**

Project:	SPT ENERGY TESTING
Project No.:	6235-17-020
Boring No.:	EB1-Y10
-	

On-site Personnel						
Drilling Company:	S&ME, INC.					
Rig Operator:	T. MILLER					
Engr/Geologist:	G. GOSLIN					
Client Rep.:	N/A					
Analyzer Oper.:	R. KRAL					

Drill Rig Make/Model:	CME 55
Carrier Type:	TRUCK
Rig Serial No.:	328245
Hammer Type/Model:	CME
Hammer Serial No.:	N/A
Hammer Drop System:	AUTOMATIC
Lubrication Condition:	PER MANUFACTURER
anufacturer Recommended	
Operation Rate (bpm):	55
Drop Height (in.):	30
Hammer Weight (lbs):	130
Anvil Dimension (in.):	11.5
Drilling Method:	MUD ROTARY

 Date:
 9/6/2018

 Weather:
 CLEAR (NIGHT) / 70's

 Drill Rod Type:
 AWJ



-		Gage Info	
Gage		Serial No.	Calibration No.
Accel.	A3	K10181	356
ALLEI.	A4	K10182	368
Strain	F3	203AWJ-1	212.63
Strain	F4	203AWJ-2	212.32

Date of Test	Test Depth Increment	Test Time Start / Stop	Length of Drill String (ft)		Avg. Meas. Hammer Rate		SPT BION	w Counts		Drop Height in Tolerance	
	(ft to ft)	(military)	(C)	(B) + (C) + (D)	(BPM)	6"	12"	18"	N-Value	(y/n)	
9/6/18	43.5 to 45.0	2216/2216	45	48.6	51	2	3	5	8	Y	SA CI
9/6/18	48.5 to 50.0	2231/2231	50	53.6	51	7	11	15	26		SA CI
9/6/18	53.5 to 55.0	2243/2244	55	58.6	51	7	12	15	27	Y	SI CL
		<b></b>	'	<u> </u>	<u>        '</u>		<u>                                     </u>				
		<b></b>	'	<u> </u>	<u>                                     </u>	<b></b>	<b></b> '				_
		<b></b>	'	<u> </u>	<u>         '</u>		<b></b> '				_
	'	<b></b>	'	<u> </u>	<u>         '</u>		<b></b> '				_
			<u> </u>	<u> </u>	<u> </u>		<u> </u>				

Notes:

NOTE: (1) Note any unusual hammer operating conditions that affect the hammer performance, or changes in operating conditions (e.g. veritcality, weather, or lubrication between trials). (2) Note any changes in rod diameter along drill string and record locations of short rod sections.

Digitally signed by: rkral@smeinc.com

DN: CN = rkral@smeinc.com

Prepared By (print/signature)

9/6/2018

Date

24 HOUR

kk lin

0 HOUR

11.5

GROUND

WATER

Depth to

## NCDOT GEOTECHNICAL ENGINEERING UNIT FIELD BORELOG (ENGLISH) PROJECT NUMBER 4752 SITE DESC BORING NUMBER EB1-Y10 ELEVATION co Cumberland GEO G. Goslow 47523.1.3 I-5986A Baggett Read Over I-95 ALIGN-MENT EAST OFFSET YID FT TOTAL NORTH

1

.

DESC BORING NUMBER	Bagge EB1-Y1	ut Ro	ad c	STA 1	-95		OFFSET	FT	ALIG		WATER 11.5 Depth to BTTM 89.0	N
ELEVATIO			FT	TOTAL DEPTH	95.0	FT	NORTH		EAST		DATE mended 09/07	b'a
DRILL MACHINE	CME	55		DRILL EQMT	3282	4.5	DRILL METHOD Mud	rota	1		HAMMER A	
START DATE		6/18		COMP		1/18	SURFACE WTR DEPTH	aner.	FT DEPT		DRILLER T. M. ILar	
DEPTH	BL	OW COU	NT	BL	OWS PER	FOOT	SAMPLE NO.		1	SOIL &	ROCK DESCRIPTION	
(ft)	0.5 ft	0.5 ft	0.5 ft	0 25	50	75 10	0 & INTERVAL	MOI	ORIGIN	SOIL OF ROCK NAME (W/ color, de ASPHALT- & INCH	nsity/consistency, texture, plasticity, organ	
6	1.0'	2	4	- 6					0	21		07
	1		- A						ROADWAY EMBANY	(NO RECOVERY) -	wood in shoe	Sterrer.
	3.5								MENT.			
-	3	3	4	07				W	RE.	DIAK GARY SILLA CLI	14 (A-7-5) m. still	
5 -	10.15							-	Prace .	1. 3	A REAL PROPERTY AND A REAL PROPERTY.	5.5-
	4	6	7	013				W	·2.E.		CANDIAD AN	1
-		9	1					1		pink grey clayery d	W DANF(A-C-() M.	dense
	8.5'											8.0 -
1	2	5	8					W	R.E.	brown givey fine so	rdy CLAY (A-6) st	SEF _
10 -							-	1				
								1				
1												
	13.5'							-	RE.	(some as previous) -	hour a shore	
	3	٩	15	(P)	24			W	1.000	Contract A Manager of Manager	Dicos , J. atin (	
15 -							1					
												7.0'
-	18.5								Undracated			-
-	,18.5 5	1	1					W	Ceautral	wellow and fine a	undy CLAP (A-6).	ust iff
20 -	J	6	10	\$ 16				~	(UCP)	201 3 / 112	1	-
20												
								34				02.0'
-	23.5						1	-			×	-
	4	6	9					w	ULP	a wy yellow silly	CLAY (A-7-6) 4. Sti	ff
25 -	ł		,	1917						0		
-								1				
												27.0-
- 2	29,5						55-220					
53	2	4	6	@15			28.5'-30.0'	W	VCP	tun grey fore san	dy CLAY CA-6) stif	
30 -				T				-		······································		(MA)
												1.00
3												32.0
	33.5							-	1.12.2.2.2.2	1		
35 _	3	2	4	06				w	VCP	grey the med 2A	ND (A-3) loose	
87 -												
								-				
-	i. I						-	-				
-	283		14					wE	UCP	(Same as previous)	1- trace the grovel	
	3	4	ч	08				1		A	,	-
NOTES	Mixed	e nue	afte	r 3.5' se	mple;	used wat	er From surfa	ur l	SIGNATU	IRE / And In	DATE 9/6	118
Au	ed 5'	Casing	alte	3.5' 3an	ple; 1	0.7-2.2 =	8.5 (bit shek	up cale)	NOTES	0.		
				p: 3.0' de	ph; l	10° 500 + 3.0	"semple)-4.5's	straleup				
	DATUM D		ho ke		FT				KED			
			S R.	where te		,						
		-		a second rest of the			DEPTH 3.0	FT				
											Form GEU-001e Revise	d 2/6/2007



SHEET 2 OF 3



• A



#### NCDOT GEOTECHNICAL ENGINEERING UNIT FIELD BORELOG (ENGLISH)





Form GEU-001e Revised 2/6/2007

0

F

Appendix III



**Smart Sensor** 

Smart Chip Programmed By XM. W. on 4DEC17 CRC Value 6407



#### **Smart Sensor**

Smart Chip Programmed By Z.M.W. on 4DEC17 CRC Value 1798





# PDI Certificate of Calibration

PDI SPT Drill Rod Serial # 20.3 AWJ

Cal Date: 3-6-17

Cal Due: 3-6-19

Temperature: 69.2 deg. F

Humidity 42 %

Manufactured by Pile Dynamics, Inc.

Calibrated at: Pile Dynamics, Inc., 30725 Aurora Road, Cleveland, OH 44139 Procedure used: SPT Drill Rod Calibration Procedure 2016-4, Revision 20160422 Calibration Data: Attach SPT Rod Data Sheet DS-17

Equipment was found to be

in tolerance As Received out of tolerance As Received



in tolerance As Returned

out of tolerance As Returned

Calibration Standards Utilized

1. PDI SPT Calibration Signal Conditioning Unit #000001, verified on 20160302

2. PDI Load Cell #75, Certificate #3482090006

Capacitec Displacement Sensor #2034, Certificate #3482090004

- 4. Capacitec Displacement Sensor #2040, Certificate #3482090004
- 5. Capacitec Displacement Mainframe #4004-671, Certificate #3482090004
- 6. Brown & Sharpe Digital Caliper #8G028506, Certificate #3482090001
- National Instruments USB-6210 DAQ serial number 159AFDE, Certificate

#3482090002

Calibration performed by:

Burrell Technician

Reviewed by:

Robert Sprenger, Production Manager

SPT CC-16 Issued 20160425

30725 Aurora Road • Cleveland, Ohio 44139 USA • +1-216-831-6131 • Fax +1-216-831-0916 E-mail: info@pile.com • www.pile.com



**Quality Assurance for Deep Foundations** 

SPT Calibration Data Sheet Revision number 20160426 Use Calibration Procedure Number 2016-8, Revision 20160422

SPT Drill Rod Data

Serial Number:	203 A WJ		Calibration Date: _	3-6-17	
Temperature:	69.2 °F	_Humidity:	428	_	

Calibration performed in accordance with PDI SPT Calibration Procedure 2016-4, Revision 20160422

As Received (circle one): Operational Malfunctioning - Damaged

Calibration data Pre-Load: 1. <u>8152</u> 2. 8045 3. 8081

Total Load: 1. 18645 2.17966 3. 9859

Common typical theoretical EA values based on SPT Rod Type: AW: 35400 NW: 43100 or 68100 N3: 70800 BW:52344

EA Theoretical <u>35,400</u> EA Measured <u>36076,68</u> Error <u>1.91</u>% Within 4% Tolerance. N/N

Alternative EA verification: Measure wall thickness, calculate area and multiply by 30000. (use spreadsheet for calculation)

Calibration values

Channel 1: As Found: (last cal): Channel 2: As Found: (last cal): EA: As Found: (last cal):  $\begin{array}{c} \underline{215.96} \\ \underline{215.96} \\ \underline{315.96} \\ As Left: \underline{212.92} \\ \underline{312.92} \\ As Left: \underline{312.92} \\ \underline{312.92} \\ Within 5\% \\ Tolerance: \underline{127} \\ N \\ \underline{31465} \\ As Left: \underline{360\%.66} \\ Difference: \underline{127} \\ \underline{67} \\$ 

Calibration performed by:

David Burrell, Technician

Reviewed by:

Robert Sprenger, Production Manager

SPT DS-17 Issued 20160426 30725 Aurora Road • Cleveland, Ohio 44139 USA • +1-216-831-6131 • Fax +1-216-831-0916 E-mail: info@pile.com • www.pile.com

203AWJ		Cycle 1		
Sample	Force (lb)	Strain (µE)	Bridge 1 (V)	Bridge 2 (V)
1	0.00	0.00	0.00	0.00
2	980.36	26.90	0.13	0.13
3	1968.60	54.22	0.26	0.26
4	3007.18	82.91	0.39	0.39
5	3992.07	109.88	0.52	0.52
6	4933.68	136.53	0.64	0.65
7	5952.40	164.15	0.78	0.78
8	6953.03	191.85	0.91	0.91
9	7927.29	218.90	1.04	1.04
10	8900.18	245.69	1.16	1.16
11	9893.92	272.74	1.29	1.29

Bridge 1		Bridge 2	
Force Calibration (lb/V)	7662.50	Force Calibration (lb/V)	7652.99
Offset	-1.78	Offset	1.71
Correlation	0.999999	Correlation	0.999997
Strain Calibration (µE/V)	211.52	Strain Calibration (µE/V)	211.26
Offset	-0.14	Offset	-0.05
Correlation	0.999998	Correlation	0.999999

Force Strain Calibration	
EA (Kips)	36225.50
Offset	3.39
Correlation	0.999997

(*

1



203AWJ	C	ycle 2		
Sample	Force (lb)	Strain (µE)	Bridge 1 (V)	Bridge 2 (V)
1	0.00	0.00	0.00	0.00
2	1014.59	28.23	0.13	0.13
3	1983.94	54.87	0.26	0.26
4	2963.12	81.94	0.39	0.39
5	3939.16	109.15	0.51	0.51
6	4924.05	136.83	0.64	0.64
7	5932.34	164.92	0.77	0.78
8	6919.00	191.62	0.90	0.90
9	7908.80	219.00	1.03	1.03
10	8881.89	246.36	1.16	1.16
11	9921.85	274.90	1.29	1.29

Bridge 1		Bridge 2	
Force Calibration (Ib/V)	7681.97	Force Calibration (lb/V)	7665.41
Offset	-11.43	Offset	-6.15
Correlation	0.999999	Correlation	0.999998
Strain Calibration (µE/V)	212.92	Strain Calibration (µE/V)	212.46
Offset	-0.28	Offset	-0.14
Correlation	0.999998	Correlation	0.999998

Force Strain Calibration	
EA (Kips)	36079.71
Offset	-1.25
Correlation	0.999996

×.

a.



203AWJ	0	Cycle 3		
Sample	Force (lb)	Strain (µE)	Bridge 1 (V)	Bridge 2 (V
1	0.00	0.00	0.00	0.00
2	931.98	26.11	0.12	0.12
3	1944.40	53.79	0.25	0.25
4	2911.39	80.73	0.38	0.38
5	3940.93	109.71	0.51	0.51
6	4935.26	137.15	0.64	0.64
7	5929.39	164.84	0.77	0.77
8	6888.90	191.71	0.90	0.90
9	7914.90	219.99	1.03	1.03
10	8887.40	247.28	1.16	1.16
11	9859.30	274.46	1.29	1.29

Bridge 1		Bridge 2	
Force Calibration (lb/V)	7667.78	Force Calibration (lb/V)	7660.59
Offset	2.72	Offset	1.09
Correlation	0.999999	Correlation	1.000000
Strain Calibration (µE/V)	213.44	Strain Calibration (µE/V)	213.24
Offset	-0.06	Offset	-0.11
Correlation	0.999998	Correlation	0.999997

Force Strain Calibration	
EA (Kips)	35924.82
Offset	4.97
Correlation	0.999998

x



Bridge Excitation (V) Shunt Resitor (ohm) 5 60.4k

Calibration Factors	203AWJ		
Bridge 1 (µE/V)	212.63	Bridge 2 (µE/V)	212.32
EA Factor (Kips)	36076.68	Area (in^2)	1.20

Calibrated by: 2/24/2017

Pile Dynamics Inc 30725 Aurora Rd Solon, OH 44139

Traceable to N.I.S.T.

Appendix IV



This documents that

## Robert E. Kral S&ME, Inc.

has on May 20, 2016 achieved the rank of

## ADVANCED

## on the Dynamic Measurement and Analysis Proficiency Test.

The individual identified on this document demonstrated to the degree granted above an understanding of theory, data quality evaluation, interpretation and signal matching for high strain dynamic testing of deep foundations. *It is recommended* that Individuals at the Advanced level seek Master or Expert levels through additional study within six years of the date of this document.

The ability of the individual named to provide appropriate knowledge and advice on a specific project is not implied or warranted by the Pile Driving Contractors Association or Pile Dynamics, Inc. **This certificate can be verified at www.PDAproficiencytest.com.** The Pile Driving Contractors Association or Pile Dynamics, Inc. assumes no liability for foundation testing and analysis work performed by the bearer of this certificate.

Steven A. Hall, Executive Director Pile Driving Contractors Association

land Likins

Garland Likins, Senior Partner Pile Dynamics, Inc.

No. 2072

Pile Dynamics, Inc.

# S&ME- CME 550X (SN 292103)



Report of SPT Energy Measurements S&ME CME 550X ATV (SN 292103) Duluth , Georgia S&ME Project No. 1280-18-100

#### PREPARED FOR

NOVA Engineering and Environmental, LLC 3900 Kennesaw 75 Parkway, Suite 100 Kennesaw, Georgia 30144

#### PREPARED BY:

S&ME, Inc. 4350 River Green Parkway, Suite 200 Duluth, Georgia 30096

April 22, 2019



April 22, 2019

NOVA Engineering and Environmental, LLC 3900 Kennesaw 75 Parkway, Suite 100 Kennesaw, Georgia 30144

Attention: Mr. Eric Tay, P.E.

Reference: Report of SPT Energy Measurements S&ME CME 550X ATV (SN 292103) Duluth, Georgia S&ME Project No. 1280-18-100

Dear Mr. Tay:

S&ME, Inc. (S&ME) completed the Standard Penetration Test (SPT) energy measurements on the automatic hammer mounted on our CME 550X ATV-mounted drill rig with a serial number of 292103. This service was performed by our Mr. Adam Jennings of S&ME on January 21, 2019 prior to field exploration on the State Route 400 Major Mobility Improvement Project (MMIP) in Atlanta, Georgia. SPT energy testing was performed in general accordance with ASTM D4633. The testing procedures, equipment used during testing, and detailed results are presented in this report.

## 1.0 Dynamic Testing Methodology

Testing was performed using a model PAX (Serial No. 3733L) Pile Driving Analyzer[™] (PDA) manufactured by Pile Dynamics, Inc. The PDA was used to record and interpret data from two piezoresistive accelerometers (Serial Nos. K10181 and K10182) bolted to an approximately 2-foot long AWJ drill rod (SN203) internally instrumented with two strain transducers. The instrumented AWJ drill rod has a cross-sectional area of 1.20 square inches, an outside diameter of approximately 1.75 inches, and an inside diameter of approximately 1.25 inches at the gauge location. The accelerometers and strain gauges, which are mounted on opposing axes near the middle of the instrumented rod, monitor acceleration and strain for each hammer blow. The analyzer converts the data to velocities and forces and computes the maximum transferred hammer energies with the "EFV" method described in ASTM D4633. Preliminary results are recorded and displayed in real time for each blow. Calibration sheets for the accelerometers and the instrumented rod are included in the Appendix.



S&ME Project No. 1280-18-100

## 2.0 Testing and Observations

On January 21, 2019, we perform high-strain dynamic testing during SPT sampling on the CME 550X ATVmounted drill rig operated by Mr. Michael Burnash of S&ME. The measurements were taken during drilling operations at the Western Gwinnett Bikeway Project in Duluth, Georgia. The energy measurements were obtained during SPT sampling at a test location labeled B-1, which was about 5 feet from a previously completed boring, labeled RW10-03. The boring log for RW10-03 is included in the Appendix. SPT energy measurements were recorded during three intervals at depths of approximately 23½, 28½, and 33. The information presented in the tables below summarizes the equipment tested and tooling used during the SPT energy measurements.

Manufacturer	CME
Model	550X
Serial Number	292103
Operator	M. Burnash
Carrier	

### Table 2-1: Drill Rig Information

### Table 2-2: Hammer Information

Model / Type	CME / Auto
Serial Number	292103
Anvil Height (inches)	11.5
Anvil Diameter (inches)	2.5
Drop Height (inches)	30
Ram Weight (pounds)	140
Ram Serial Number	N/A

### Table 2-3: Drilling and Instrumented Rod Information

Drill Rod Type	AWJ		
OD (inches)	1.75		
ID (inches)	1.25		
Cross-Sectional Area (in ² )	1.20		
Typical Lengths (feet)	5		
Instrumented Rod Type	AWJ (SN 203)		
OD (inches)	1.75		
ID (inches)	1.25		
Cross-Sectional Area (in ² )	1.20		
Total Instrumented Rod Length (feet)	2.00		
Length Below Gages (feet)	0.8		
Split-Spoon Length (feet)	2.85		



S&ME Project No. 1280-18-100

## 3.0 Dynamic Testing Results

The total rod length from the instrumentation to the tip of the split-spoon sampler was determined by adding 3.65 ft to the required drill rod length at each sample depth. Based on the test data, the automatic hammer on the CME 550X ATV-mounted drill rig operated at a rate of about 50 to 51 blows per minute (bpm) during dynamic testing. The measured transferred hammer energy (EFV) ranged from 307.0 to 336.8 ft-lbs, which corresponds to Energy Transfer Ratio (ETR) values of 87.7 to 96.2%, respectively. The SPT Energy Measurement Data Summary tables in the Appendix present the test data from every hammer blow at each sampling interval, along with representative force and velocity traces for each test interval. The reported blow counts, obtained by the drill rig personnel, and a summary of the test data and average computed hammer energy and transfer ratio values are provided in Table 3-1. Plots and tables of the following are also included in the Appendix and present the test data with depth for each test interval:

• Penetration vs. BLC

Penetration vs. FMX

- Penetration vs. CSX
- Average ETR vs. Rod Length
   ETR vs. Pod Length

• Penetration vs. EFV

- Penetration vs. VMX
- Penetration vs. ETR
- ETR vs. Rod Length

Data Set ID	Sample Depth (ft)	Drill Rod Length (ft)	Instrumentation to Sampler Tip Length	Blows per 6" Increment / N-value	Soil Sample Description (Coastal	Avg. BPM	Avg. EFV (ft-lbs)	Avg. ETR (%)
1	231⁄2 - 35	25	<b>(ft)</b> 28.65	8-15-37 / 52	Plain) Sandy Silt	50.2	320.0	91.4
2	281⁄2 - 45	30	33.65	7-17-24 / 24	Sandy Silt	50.5	319.5	91.3
3	33½ - 45	35	38.65	6-9-50/3" / 50/3"	Sandy Silt	50.4	320.3	91.5
	Overall Average				50.3	320.0	91.4	

### Table 3-1: Summary of Dynamic Testing Results

The average hammer rate, transferred energy, and transfer ratio were calculated for each depth interval. Per ASTM D4633, only the blows from the final foot of each sample interval (i.e. the blows that determine the N-value) were included when computing the average values shown in Table 3-1. The overall average transferred hammer energy for the automatic hammer on the CME 550X ATV-mounted drill rig (for all the depth intervals tested) was 320.0 foot-pounds, with an average ETR of 91.4%.



Report of SPT Energy Measurements S&ME CME 550X ATV (SN 292103) Duluth, Georgia

S&ME Project No. 1280-18-100

## 4.0 Limitations of Report

This report has been prepared in accordance with generally accepted geotechnical engineering practice for specific application to this project. The conclusions contained in this report were based on the applicable standards of our profession in this geographic area at the time this report was prepared. No other warranty, express or implied, is made.

## 5.0 Closing

We appreciate the opportunity to be of service on this project. Please let us know if you have any questions concerning this report.

Sincerely,

S&ME, Inc.

David L. Schoen, P.E. (SC) Project Engineer <u>dschoen@smeinc.com</u>

Jeffrey A. Doubrava, P.E. Vice President / Senior Engineer jdoubrava@smeinc.com

Appendices:

- Appendix I CME 550X ATV (SN 292103) SPT Energy Measurements Summary Plots and Tables
- Appendix II SPT Energy Evaluation Form (Field Log) and nearby SPT Field Boring Log
- Appendix III Instrumented Rod and Accelerometer Calibration Sheets



### Report of SPT Energy Measurements S&ME CME 550X ATV (SN 292103)

Duluth, Georgia S&ME Project No. 1280-18-100

Appendices







 SPT Analyzer Results
 PDA-S Ver. 2018.30 - Printed: 2/8/2019

 CME-550X (SN 292103)
 23.5 to 25.0

 A. Jennings
 Test date: 1/21/2019

 B-4
 Test date: 1/21/2019

 AR: 1.20
 in^2

 LE: 28.65
 ft

 WS: 16807.9 ft/s
 EM: 30000 ksi



F1 : [203 AWJ-1] 212.63 PDICAL (1) FF1 F2 : [203 AWJ-2] 212.32 PDICAL (1) FF1

Pile Dynamics, Inc.

A1 (PR): [K10181] 356 mv/6.4v/5000g (1) VF1 A2 (PR): [K10182] 368 mv/6.4v/5000g (1) VF1 Page 1 of 7

BPM: Blows/N	<i>l</i> inute						DFN:	Final Displ	acement	
FMX: Maximu	Im Force						CSX:	Compressi	on Stress M	aximum
VMX: Maximu	,							Maximum		
DMX: Maximu									ansfer Ratio	
BL#	LP	BC	BPM	FMX	VMX	DMX	DFN	CSX	EFV	ETR
	ft	/6"	bpm	kips	ft/s	in	in	ksi	ft-lb	%
1	23.56	8	1.9	29.2	20.8	1.74	0.75	24.3	302.3	86.4
2	23.63	8	50.3	32.3	21.3	1.43	0.75	26.9	311.8	89.1
3	23.69	8	51.4	28.0	20.5	1.21	0.75	23.3	308.5	88.1
4	23.75	8	50.6	28.8	20.4	1.10	0.75	24.0	309.0	88.3
5	23.81	8	51.0	28.8	20.8	0.99	0.75	24.0	309.5	88.4
6	23.88	8	50.7	26.8	20.5	0.93	0.75	22.3	306.9	87.7
7	23.94	8	50.5	30.3	21.1	0.80	0.75	25.2	310.4	88.7
8	24.00	8	50.5	30.0	21.3	0.84	0.75	25.0	315.0	90.0
9	24.03	15	50.5	26.2	20.8	0.68	0.40	21.8	321.5	91.9
10	24.07	15	50.6	30.7	21.1	0.51	0.40	25.6	322.3	92.1
11	24.10	15	50.5	27.0	20.6	0.51	0.40	22.5	311.0	88.9
12	24.13	15	50.5	31.2	21.7	0.49	0.40	26.0	327.8	93.7
13	24.17	15	50.6	27.4	21.6	0.54	0.40	22.8	317.8	90.8
14	24.20	15	50.7	26.7	21.4	0.54	0.40	22.2	318.4	91.0
15	24.23	15	50.3	27.2	20.8	0.49	0.40	22.6	312.9	89.4
16	24.27	15	50.3	29.4	21.6	0.48	0.40	24.5	325.8	93.1
17	24.30	15	50.5	28.9	21.5	0.48	0.40	24.1	311.2	88.9
18	24.33	15	50.3	28.3	21.8	0.49	0.40	23.6	318.7	91.0
19	24.37	15	50.5	26.8	21.8	0.47	0.40	22.3	320.3	91.5
20	24.40	15	50.4	27.6	20.6	0.45	0.40	23.0	317.2	90.6
21	24.43	15	50.6	27.0	21.7	0.46	0.40	22.5	321.1	91.7
22	24.47	15	50.5	27.1	21.7	0.44	0.40	22.6	319.4	91.3
23	24.50	15	50.5	27.6	21.6	0.46	0.40	23.0	330.4	94.4
24	24.51	37	50.5	27.8	21.0	0.43	0.16	23.2	317.9	90.8
25	24.53	37	50.3	26.6	21.6	0.43	0.16	22.2	322.3	92.1
26	24.54	37	50.5	27.3	21.3	0.41	0.16	22.7	320.1	91.4
27	24.55	37	50.0	26.4	21.3	0.41	0.16	22.0	316.8	90.5

-										
28	24.57	37	50.1	27.7	21.3	0.40	0.16	23.1	330.1	94.3
29	24.58	37	50.0	27.3	20.9	0.37	0.16	22.7	317.0	90.6
30	24.59	37	50.3	26.9	21.2	0.37	0.16	22.4	310.6	88.8
31	24.61	37	50.3	26.7	20.6	0.38	0.16	22.3	308.6	88.2
32	24.62	37	50.1	26.8	20.8	0.37	0.16	22.3	314.0	89.7
33	24.64	37	49.9	30.8	22.0	0.37	0.16	25.6	325.5	93.0
34	24.65	37	50.0	29.3	22.2	0.38	0.16	24.4	329.8	94.2
35	24.66	37	50.1	28.9	21.4	0.38	0.16	24.1	331.5	94.7
36	24.68	37	50.2	27.1	21.4	0.35	0.16	22.6	309.5	88.4
37	24.69	37	50.1	27.9	20.7	0.36	0.16	23.2	322.3	92.1
38	24.70	37	49.9	27.2	21.1	0.35	0.16	22.7	312.6	89.3
39	24.72	37	50.1	27.0	20.9	0.35	0.16	22.5	313.7	89.6
40	24.73	37	50.1	30.8	22.7	0.36	0.16	25.6	324.4	92.7
41	24.74	37	50.1	27.6	21.7	0.36	0.16	23.0	316.9	90.5
42	24.76	37	50.0	25.9	21.6	0.37	0.16	21.6	326.7	93.4
43	24.77	37	50.2	26.7	21.3	0.36	0.16	22.2	323.5	92.4
44	24.78	37	50.0	26.6	21.4	0.36	0.16	22.2	319.8	91.4
45	24.80	37	50.1	27.4	23.0	0.36	0.16	22.8	327.7	93.6
46	24.81	37	50.0	28.9	22.2	0.36	0.16	24.1	326.1	93.2
47	24.82	37	50.0	29.5	21.1	0.35	0.16	24.6	312.8	89.4
48	24.84	37	50.0	26.1	21.1	0.36	0.16	21.7	323.0	92.3
49	24.85	37	50.1	25.7	21.3	0.35	0.16	21.5	311.0	88.9
50	24.86	37	50.2	26.9	20.2	0.36	0.16	22.4	320.1	91.5
51	24.88	37	50.0	26.0	21.2	0.34	0.16	21.6	312.7	89.3
52	24.89	37	50.1	26.6	20.6	0.35	0.16	22.1	311.0	88.9
53	24.91	37	50.0	30.9	22.9	0.36	0.16	25.7	328.7	93.9
54	24.92	37	49.8	29.8	20.0	0.34	0.16	24.8	307.7	87.9
55	24.93	37	50.3	30.5	22.7	0.36	0.16	25.4	334.4	95.5
56	24.95	37	50.1	27.4	20.4	0.35	0.16	22.9	316.5	90.4
57	24.96	37	50.0	27.0	21.3	0.36	0.16	22.5	322.0	92.0
58	24.97	37	49.9	28.4	21.2	0.36	0.16	23.7	326.1	93.2
59	24.99	37	50.1	29.8	22.2	0.36	0.16	24.8	329.7	94.2
 60	25.00	37	50.1	31.4	20.8	0.35	0.16	26.2	320.7	91.6
		Average	50.2	27.9	21.4	0.41	0.23	23.2	320.0	91.4
		Std Dev	0.2	1.5	0.6	0.07	0.11	1.3	6.7	1.9
		Maximum	50.7	31.4	23.0	0.68	0.40	26.2	334.4	95.5
		Minimum	49.8	25.7	20.0	0.34	0.16	21.5	307.7	87.9
				N-v	alue: 52					

Page 3 of 7 PDA-S Ver. 2018.30 - Printed: 2/8/2019

> 23.5 to 25.0 Test date: 1/21/2019

CME-550X (SN 292103) A. Jennings B-4 AR: 1.20 LE: 33.65 in^2 SP: 0.492 k/ft3 EM: 30000 ksi ft WS: 16807.9 ft/s



F1 : [203 AWJ-1] 212.63 PDICAL (1) FF1 F2 : [203 AWJ-2] 212.32 PDICAL (1) FF1

A1 (PR): [K10181] 356 mv/6.4v/5000g (1) VF1 A2 (PR): [K10182] 368 mv/6.4v/5000g (1) VF1

BPM: Blows/M FMX: Maximu VMX: Maximu	ım Force ım Velocity						CSX: EFV:	Maximum	on Stress M Energy	
DMX: Maximu									ansfer Ratio	
BL#	LP	BC	BPM	FMX	VMX	DMX	DFN	CSX	EFV	ETR
	ft	/6"	bpm	kips	ft/s	in	in	ksi	ft-lb	%
1	28.57	7	1.9	28.2	20.9	1.85	0.86	23.5	305.4	87.2
2	28.64	7	51.0	29.2	21.1	1.67	0.86	24.3	310.6	88.8
3	28.71	7	50.6	27.9	20.4	1.06	0.86	23.2	314.3	89.8
4	28.79	7	50.9	27.6	20.6	1.03	0.86	23.0	309.5	88.4
5	28.86	7	50.5	28.5	20.3	1.16	0.86	23.8	309.4	88.4
6	28.93	7	50.6	27.5	19.8	1.09	0.86	22.9	303.9	86.8
7	29.00	7	50.4	28.7	19.8	0.96	0.86	23.9	310.9	88.8
8	29.07	7	50.6	30.1	20.6	0.88	0.86	25.0	315.0	90.0
9	29.14	7	50.5	28.2	20.6	0.86	0.86	23.5	320.3	91.5
10	29.21	7	50.3	27.7	20.1	0.86	0.86	23.1	312.4	89.3
11	29.29	7	50.5	28.9	20.5	0.86	0.86	24.1	311.9	89.1
12	29.36	7	50.5	28.1	21.0	0.86	0.86	23.4	313.6	89.6
13	29.43	7	50.8	27.7	20.9	0.86	0.86	23.1	311.4	89.0
14	29.50	7	50.4	28.9	21.7	0.87	0.86	24.0	315.1	90.0
15	29.53	17	50.8	28.5	21.7	0.65	0.35	23.8	314.6	89.9
16	29.56	17	50.6	28.2	21.8	0.61	0.35	23.5	317.5	90.7
17	29.59	17	50.3	27.9	21.3	0.58	0.35	23.2	317.8	90.8
18	29.62	17	50.7	28.6	22.4	0.52	0.35	23.8	315.6	90.2
19	29.65	17	50.4	26.5	21.3	0.49	0.35	22.0	323.1	92.3
20	29.68	17	50.2	29.1	22.8	0.47	0.35	24.2	322.9	92.3
21	29.71	17	50.4	26.9	22.0	0.45	0.35	22.4	321.5	91.9
22	29.74	17	50.7	26.5	21.4	0.44	0.35	22.1	324.0	92.6
23	29.76	17	50.8	26.3	21.9	0.43	0.35	22.0	315.4	90.1
24	29.79	17	50.5	26.3	22.0	0.45	0.35	21.9	320.8	91.7
25	29.82	17	50.5	26.2	21.9	0.44	0.35	21.8	326.1	93.2
26	29.85	17	50.4	25.8	21.5	0.44	0.35	21.5	325.6	93.0
27	29.88	17	50.6	27.4	22.4	0.42	0.35	22.9	316.3	90.4

#### Page 4 of 7 PDA-S Ver. 2018.30 - Printed: 2/8/2019

28	29.91	17	50.3	27.6	22.0	0.43	0.35	23.0	324.2	92.6
29	29.94	17	50.7	28.4	23.4	0.43	0.35	23.6	324.6	92.7
30	29.97	17	50.4	28.1	22.9	0.44	0.35	23.4	327.9	93.7
31	30.00	17	50.3	30.9	22.7	0.45	0.35	25.7	331.4	94.7
	1	Average	50.5	27.9	21.7	0.59	0.50	23.2	319.5	91.3
		Std Dev	0.2	1.2	0.8	0.18	0.23	1.0	5.5	1.6
	М	aximum	50.8	30.9	23.4	0.88	0.86	25.7	331.4	94.7
	N	linimum	50.2	25.8	20.1	0.42	0.35	21.5	311.4	89.0
				N-\	/alue: 24					

Page 5 of 7 PDA-S Ver. 2018.30 - Printed: 2/8/2019

> 23.5 to 25.0 Test date: 1/21/2019

CME-550X (SN 292103) A. Jennings B-4 AR: 1.20 in^2 LE: 38.65 ft WS: 16807.9 ft/s

SP: 0.492 k/ft3 EM: 30000 ksi



F1 : [203 AWJ-1] 212.63 PDICAL (1) FF1 F2 : [203 AWJ-2] 212.32 PDICAL (1) FF1 A1 (PR): [K10181] 356 mv/6.4v/5000g (1) VF1 A2 (PR): [K10182] 368 mv/6.4v/5000g (1) VF1

BPM: Blows/M	/linute						DFN:	Final Displ	acement	
FMX: Maximu	Im Force								ion Stress M	aximum
VMX: Maximu	Im Velocity						EFV:	Maximum	Energy	
DMX: Maximu	ım Displacem						ETR:	Energy Tra	ansfer Ratio	
BL#	LP	BC	BPM	FMX	VMX	DMX	DFN	CSX	EFV	ETR
	ft	/6"	bpm	kips	ft/s	in	in	ksi	ft-lb	%
1	33.58	6	1.9	30.0	21.5	1.73	1.00	25.0	314.5	89.9
2	33.67	6	51.1	29.7	21.2	1.44	1.00	24.7	315.7	90.2
3	33.75	6	50.6	29.9	21.2	1.29	1.00	24.9	312.0	89.1
4	33.83	6	50.8	29.5	19.4	1.23	1.00	24.6	316.7	90.5
5	33.92	6	50.7	31.4	20.4	1.25	1.00	26.2	326.1	93.2
6	34.00	6	50.5	30.6	20.4	1.14	1.00	25.5	325.3	92.9
7	34.06	9	50.6	29.5	19.7	0.87	0.67	24.6	309.8	88.5
8	34.11	9	50.8	29.0	19.6	0.85	0.67	24.1	307.0	87.7
9	34.17	9	50.5	30.2	20.1	0.85	0.67	25.2	317.1	90.6
10	34.22	9	50.6	31.8	20.3	0.84	0.67	26.5	318.4	91.0
11	34.28	9	50.7	28.8	19.6	0.85	0.67	24.0	313.6	89.6
12	34.33	9	50.5	29.0	19.8	0.82	0.67	24.2	318.7	91.0
13	34.39	9	50.4	29.7	20.0	0.68	0.67	24.7	326.7	93.3
14	34.44	9	50.5	29.4	20.2	0.67	0.67	24.5	315.1	90.0
15	34.50	9	50.7	29.3	19.8	0.67	0.67	24.4	312.0	89.2
16	34.51	0	50.5	28.8	20.5	0.44	0.06	24.0	317.4	90.7
17	34.51	0	50.8	29.5	20.1	0.42	0.06	24.6	320.6	91.6
18	34.52	0	50.2	30.7	21.0	0.41	0.06	25.6	322.7	92.2
19	34.52	0	50.1	28.0	21.1	0.40	0.06	23.3	319.8	91.4
20	34.53	0	50.4	30.7	21.3	0.40	0.06	25.6	327.1	93.5
21	34.53	0	50.4	30.0	21.7	0.39	0.06	25.0	326.4	93.3
22	34.54	0	50.3	29.4	21.4	0.39	0.06	24.5	327.9	93.7
23	34.54	0	50.4	27.4	19.9	0.38	0.06	22.8	315.9	90.3
24	34.55	0	50.2	26.4	21.0	0.37	0.06	22.0	308.7	88.2
25	34.55	0	50.4	27.1	20.3	0.37	0.06	22.6	311.3	89.0
26	34.56	0	50.3	27.6	21.7	0.37	0.06	23.0	313.0	89.4
27	34.56	0	50.3	27.1	21.1	0.37	0.06	22.6	317.3	90.7

Pile Dynamic	s, Inc.
SPT Analyzer R	esults

_

Page 6 of 7 PDA-S Ver. 2018.30 - Printed: 2/8/2019

28	34.57	0	50.4	27.6	21.4	0.38	0.06	23.0	316.5	90.4
29	34.57	0	50.5	30.1	21.7	0.38	0.06	25.1	323.9	92.5
30	34.58	0	50.3	27.2	21.2	0.37	0.06	22.6	310.6	88.8
31	34.58	0	50.1	27.6	21.5	0.38	0.06	23.0	320.1	91.5
32	34.59	0	50.4	27.6	21.1	0.38	0.06	23.0	323.6	92.4
33	34.59	0	50.3	30.2	21.3	0.37	0.06	25.1	318.8	91.1
34	34.60	0	50.2	29.9	22.4	0.39	0.06	25.0	333.5	95.3
35	34.60	0	50.4	27.9	21.4	0.38	0.06	23.3	321.0	91.7
36	34.61	0	50.4	28.3	21.5	0.37	0.06	23.6	322.7	92.2
37	34.61	0	50.1	30.4	21.8	0.37	0.06	25.4	328.0	93.7
38	34.62	0	50.5	29.5	19.8	0.38	0.06	24.6	320.6	91.6
39	34.62	0	50.3	27.4	21.2	0.36	0.06	22.9	319.3	91.2
40	34.63	0	50.3	29.0	20.3	0.35	0.06	24.1	316.0	90.3
41	34.63	0	50.4	29.2	20.8	0.36	0.06	24.3	321.7	91.9
42	34.64	0	50.3	27.6	21.2	0.36	0.06	23.0	317.2	90.6
43	34.64	0	50.3	28.9	20.9	0.36	0.06	24.1	323.2	92.4
44	34.65	0	50.1	27.6	21.0	0.35	0.06	23.0	316.8	90.5
45	34.65	0	50.5	28.4	20.8	0.35	0.06	23.7	321.3	91.8
46	34.66	0	50.3	27.5	21.3	0.35	0.06	22.9	317.7	90.8
47	34.66	0	50.3	27.9	21.7	0.38	0.06	23.3	336.8	96.2
48	34.67	0	50.2	27.7	20.7	0.37	0.06	23.1	332.2	94.9
49	34.67	0	50.4	28.8	20.8	0.36	0.06	24.0	325.7	93.0
50	34.68	0	50.3	27.8	21.1	0.35	0.06	23.2	318.8	91.1
51	34.68	0	50.3	29.2	20.6	0.34	0.06	24.3	321.1	91.8
52	34.69	0	50.3	29.5	21.9	0.35	0.06	24.6	322.2	92.1
53	34.69	0	50.4	28.2	20.4	0.35	0.06	23.5	317.7	90.8
54	34.70	0	50.4	26.9	21.1	0.35	0.06	22.5	320.4	91.5
55	34.70	0	50.3	26.4	21.5	0.36	0.06	22.0	324.5	92.7
56	34.71	0	50.1	29.6	22.2	0.35	0.06	24.7	318.7	91.1
57	34.71	0	50.3	27.3	21.2	0.35	0.06	22.7	316.7	90.5
58	34.72	0	50.2	28.1	22.3	0.36	0.06	23.4	332.3	94.9
59	34.72	0	50.3	27.1	21.4	0.35	0.06	22.6	325.4	93.0
60	34.73	0	50.2	28.1	20.9	0.35	0.06	23.5	318.2	90.9
61	34.73	0	50.3	27.4	21.8	0.35	0.06	22.8	322.8	92.2
62	34.74	0	50.3	27.2	21.4	0.35	0.06	22.7	317.9	90.8
63	34.74	0	50.3	25.1	22.3	0.35	0.06	20.9	322.4	92.1
64	34.75	0	50.1	25.9	22.5	0.36	0.06	21.6	327.3	93.5
65	34.75	0	50.3	25.3	21.2	0.35	0.06	21.1	317.7	90.8
		Average	50.4	28.4	21.0	0.43	0.15	23.7	320.3	91.5
		Std Dev	0.2	1.4	0.7	0.16	0.22	1.1	6.0	1.7
		Maximum	50.8	31.8	22.5	0.87	0.67	26.5	336.8	96.2
		Minimum	50.1	25.1	19.6	0.34	0.06	20.9	307.0	87.7
				N-v	alue: 50 / 3'	•				

#### Summary of SPT Test Results

Project: CME-5	50X (SN 292	103), Test E	Date: 1/21/2019	9									
BPM: Blows/Mi	inute										DFN: Final Di	splacement	
FMX: Maximun	n Force										CSX: Compre	ssion Stress	Maximum
VMX: Maximun	n Velocity										EFV: Maximu	ım Energy	
DMX: Maximun	n Displaceme	ent									ETR: Energy	Transfer Rati	o - Rated
Instr.	Start	Final	Blows	N	N60	Average	Average	Average	Average	Average	Average	Average	Average
Length	Depth	Depth	Applied	Value	Value	BPM	FMX	VMX	DMX	DFN	CSX	EFV	ETR
ft	ft	ft	/6"			bpm	kips	ft/s	in	in	ksi	ft-lb	%
28.65	23.50	25.00	8-15-37	52	79	50.2	27.9	21.4	0.41	0.23	23.2	320.0	91.4
33.65	28.50	30.00	7-7-17	24	36	50.5	27.9	21.7	0.59	0.50	23.2	319.5	91.3
38.65	33.50	35.00	6-9-50/3"	50/3"	50/3"	50.4	28.4	21.0	0.43	0.15	23.7	320.3	91.5
			Ov	erall Average	e Values:	50.3	28.1	21.3	0.45	0.24	23.4	320.0	91.4
				Standard D	Deviation:	0.2	1.4	0.8	0.15	0.22	1.2	6.2	1.8
			Ove	erall Maximu	ım Value:	50.8	31.8	23.4	0.88	0.86	26.5	336.8	96.2
			Ov	erall Minimu	ım Value:	49.8	25.1	19.6	0.34	0.06	20.9	307.0	87.7









### **SPT Energy Evaluation Form**

Project: SPT ENERGY TESTING	Da	te: //2//	209
Project No.: 1230-18-098 PILO	Weath	- / / /	33°
Boring No .: B-1 (Testing Borry)	Drill Rod Typ		<i></i>
On-site Personnel	$\mathbf{)}$	Rod Info	
Drilling Company:	(A + E) Impact Surfa		ANVE
Rig Operator: Mike Boznash	to Gages Leng		EXTRA ROD
Engr/Geologist:	(B) Instr. Rod Leng		
Client Rep.:	below Gag	2	GAGES
Analyzer Oper :: ADAM JENONUS	(A) + (B) Instr. Rod Leng		ACCELEROMETERS)
		th: 2.85 ft	DRILL STRING
	(E) Rod Length Abo		TY
	Instr. Rod (if applicabl		
<b>Rig/Hammer Info</b>		N: ZOJAWJ	
Drill Rig Make/Model: CME 550X	Instr. Rod Outside Di	the product of the local data was and the second data	SPLIT SPOON
Carrier Type: ATV	Instr. Rod Are		
Rig Serial No.: 292103	PDA Make/Mod	Provide Surface of Contemportunity of Contemportuni	
Hammer Type/Model: AUTO CME		0.: 3733L	
Hammer Serial No.: 292103	Calib. Pulse Test (y/		
Hammer Drop System:			<u> </u>
Lubrication Condition:			
Manufacturer Recommended		Gage Info	
Operation Rate (bpm): 50-55	Gage	Serial No.	Calibration No.
Typical Drop Height (in.): 30	Accel	3 K10181	356
Typical Hammer Weight (lbs): 140	Accel.	4 K10182	358
Anvil Dimension (in.): 12	Strain F3	3 203AWJ-1	212.63
Drilling Method: 31/4 HSA w/ AWS 12005		203AAWJ-2	212.32
of Test Test Depth Increment Test Time Start / Stop Length of (L	E) Length below Avg. Meas.		
Drill String (ft)	Gages Hammer (ft) Rate	SPT Blow Cour	nts Drop H
(ft to ft) (military) (C)	(R) + (C) + (D) (RDM) (C)		

SA SI SA SI SA SI SI SA

WR

WR

(y/n)

У

Y

Y

Notes:

12/19/2018

12/19/2018

12/19/2018

12/19/2018

12/19/2018

12/19/2018

23.5-25.0

28.5-30.0

33.5-35.0

NOTE: (1) Note any unusual hammer operating conditions that affect the hammer performance, or changes in operating conditions (e.g. veritcality, weather, or lubrication between trials). (2) Note any changes in rod diameter along drill string and record locations of short rod sections.

(B) + (C) + (D)

(BPM)

6"

7

5

5

12"

15

7

9

18"

37

17

50/3

N-Value

52

24

Date

(C)

(military)

PROJE			Western Gwin Peachtree Industrial Boul S&ME Project No	evard   Duluth . 1280-18-098	· •		BORIN	GLOG RV	V10-03	}
	T: Pond			ELEVATION: 9			NUTES.			
DATE [	DRILLED	D: <b>1/14</b>	/19 - 1/14/19	BORING DEPTH	⊣: 25.0 ft					
DRILL	rig: <b>D</b> -	50		WATER LEVEL	Dry ATD					
DRILLE	ER: <b>S&amp;I</b>	ME, Inc		CAVE-IN DEPT	H: Not measured					
HAMM	ER TYP	E: Aut	omatic	LOGGED BY: A	AL.					
SAMPL	ING ME	THOD	Split Spoon							
	NG MET	HOD:	31/4" Hollow Stem Auger				STATION:	258+50 OFF	SET:	
DEPTH (feet)	ELEV. (')	GRAPHIC LOG	MATERIAL DESCRI	PTION	TESTS	SAMPLE DATA	BLOWS	STANDARD PEN	(blows/ft)	1EST DATA
-	910-		ALLUVIUM: SANDY CLAY (CL) brown, moist	- soft to firm,		1	1-2-3 2-2-2	5		
-	-		ALLUVIUM: CLAYEY SAND (SC brown and tan, moist	<b></b>		3	2-2-2			
5	905-		ALLUVIUM: SANDY CLAY (CL) gray, tan, and red, moist	- very stiff,			4-7-10	-		
10 — - -	900-		RESIDUUM: SILTY SAND (SM) medium dense, tan and gray, fine grained, moist, w/ rock fragments	e to medium		4	4-7-10		17 •	
- 15 — -	895-					5	7-6-6		12.	
- - 20 — -	- - - - 890					6	3-4-6	1	0	
- - 25 —			Boring terminated at 25 feet			7	3-5-3	8	<b>↓</b>	
NOTE	2. B 2. B 3. S 4. N	ROJECT ORING, CCORD, TRATIFI /ATER L	IS ONLY A PORTION OF A REPORT PRE AND MUST ONLY BE USED TOGETHER SAMPLING AND PENETRATION TEST DA ANCE WITH ASTM D-1586. CATION AND GROUNDWATER DEPTHS J EVEL IS AT TIME OF EXPLORATION AND CRIPTIONS BASED ON SAMPLES OBTAIL	WITH THAT REPORT. TA IN GENERAL ARE NOT EXACT. WILL VARY.	MED		Page 1 of	 f 1		8



**Smart Sensor** 

Smart Chip Programmed By XM. W. on 4DEC17 CRC Value 6407



#### **Smart Sensor**

Smart Chip Programmed By Z.M.W. on 4DEC17 CRC Value 1798

203AWJ		Cycle 1		
Sample	Force (lb)	Strain (µE)	Bridge 1 (V)	Bridge 2 (V)
1	0.00	0.00	0.00	0.00
2	1238.45	35.09	0.16	0.16
3	2101.82	59.39	0.28	0.28
4	3386.54	94.77	0.44	0.44
5	4235.08	119.35	0.56	0.56
6	5136.73	144.58	0.67	0.67
7	6021.00	168.91	0.79	0.79
8	7359.61	207.34	0.97	0.97
9	8298.94	232.84	1.09	1.09
10	9187.31	257.76	1.21	1.20
11	10120.00	284.12	1.33	1.33

Bridge 1		Bridge 2	
Force Calibration (lb/V)	7630.77	Force Calibration (lb/V)	7630.97
Offset	-7.83	Offset	-3.17
Correlation	1.000000	Correlation	0.999999
Strain Calibration (µE/V)	213.97	Strain Calibration (µE/V)	213.98
Offset	0.12	Offset	0.25
Correlation	0.999992	Correlation	0.999995

Force Strain Calibration	
EA (Kips)	35662.28
Offset	-12.17
Correlation	0.999993



203AWJ		Cycle 2		
Sample	Force (lb)	Strain (µE)	Bridge 1 (V)	Bridge 2 (V)
1	0.00	0.00	0.00	0.00
2	883.29	25.21	0.12	0.12
3	1765.61	49.65	0.23	0.23
4	3049.75	86.59	0.40	0.40
5	3958.42	112.20	0.52	0.52
6	4857.33	137.43	0.64	0.64
7	5743.75	162.78	0.76	0.76
8	7145.42	202.15	0.94	0.94
9	8044.14	227.44	1.06	1.06
10	8969.22	253.99	1.18	1.18
11	9924.95	280.34	1.30	1.30

Bridge 1		Bridge 2	
Force Calibration (lb/V)	7617.86	Force Calibration (lb/V)	7627.07
Offset	-11.91	Offset	-18.36
Correlation	0.999998	Correlation	1.000000
Strain Calibration (µE/V)	215.30	Strain Calibration (µE/V)	215.56
Offset	-0.14	Offset	-0.33
Correlation	0.999995	Correlation	0.999996

Force Strain Calibration	
EA (Kips)	35381.61
Offset	-6.76
Correlation	0.999996



203AWJ		Cycle 3		
Sample	Force (lb)	Strain (µE)	Bridge 1 (V)	Bridge 2 (V)
1	0.00	0.00	0.00	0.00
2	843.85	23.93	0.11	0.11
3	2145.36	61.00	0.28	0.28
4	3029.63	85.25	0.40	0.40
5	3880.71	109.47	0.51	0.51
6	5241.19	147.71	0.69	0.69
7	6147.33	172.47	0.81	0.81
8	7034.72	198.06	0.92	0.92
9	7979.71	224.33	1.05	1.05
10	8906.15	249.58	1.17	1.17
11	9817.56	275.86	1.29	1.29

Bridge 1		Bridge 2	
Force Calibration (lb/V)	7623.93	Force Calibration (Ib/V)	7629.88
Offset	-3.49	Offset	-9.59
Correlation	0.999999	Correlation	0.999999
Strain Calibration (µE/V)	213.65	Strain Calibration (µE/V)	213.81
Offset	0.47	Offset	0.30
Correlation	0.999992	Correlation	0.999991

Force Strain Calibration	
EA (Kips)	35684.19
Offset	-20.08
Correlation	0.999992

¥



Bridge Excitation (V) Shunt Resitor (ohm)

 $\mathbf{r} = \mathbf{V} \cdot \mathbf{r} = \mathbf{S}$ 

5 60.4k

Calibration Factors	203AWJ		
Bridge 1 (µE/V)	214.31	Bridge 2 (µE/V)	214.45
EA Factor (Kips)	35576.02	Area (in^2)	1.19

Calibrated by: ____ Calibrated Date: a Λ 2/26/2019

Pile Dynamics Inc 30725 Aurora Rd Solon, OH 44139

Traceable to N.I.S.T.

# S&ME- Diedrich D-50 Track (SN 382)



Report of SPT Energy Measurements S&ME Diedrich D-50 Track (Serial No. 382) Spartanburg, South Carolina S&ME Project No. 6235-17-020

#### PREPARED FOR

North Carolina Department of Transportation Geotechnical Engineering Unit 1589 Mail Service Center Raleigh, North Carolina 27699

#### PREPARED BY:

S&ME, Inc. 9751 Southern Pine Boulevard Charlotte, North Carolina 28273

March 6, 2019

		8	2
6	-		
1			
			-

March 6, 2019

North Carolina Department of Transportation Geotechnical Engineering Unit 1589 Mail Service Center Raleigh, North Carolina 27699

Attention: Dr. Shunyi (Chris) Chen, Ph.D., P.E.

Cc: Ms. Cheryl A. Youngblood, L.G.

Reference: Report of SPT Energy Measurements S&ME Diedrich D-50 Track (Serial No. 382) Spartanburg, South Carolina S&ME Project No. 6235-17-020 NC PE Firm License No. F-0176

Dear Dr. Chen:

We have completed the Standard Penetration Test (SPT) energy measurements on the automatic hammer used with our Diedrich D-50 track-mounted drill rig (Serial No. 382). This service was performed by Mr. Joseph Williamson, P.E. of our firm on February 15, 2019, in general accordance with ASTM D4633 and the most recent revision of the North Carolina Department of Transportation (NCDOT) Geotechnical Engineering Unit's requirements. Review of the data quality and analyses was performed by Mr. Gregory Canivan, P.E. of our firm. Copies of the Certificates of Proficiency issued by Pile Dynamics based on the Dynamic Measurement and Analysis Proficiency Test for Mr. Williamson and Mr. Canivan are included in the Appendix. The testing procedures, equipment used during testing, and detailed results are presented in this report.

## 1.0 Dynamic Testing Methodology

Testing was performed using a model PAX (Serial No. 3733L) Pile Driving Analyzer[™] (PDA) manufactured by Pile Dynamics, Inc. The PDA was used to record and interpret data from two piezoresistive accelerometers (Serial Nos. K10181 and K10182) bolted to a 2.65-foot long BW drill rod (Serial No. 102) internally instrumented with two strain transducers. Calibration sheets for the accelerometers and the instrumented rod are included in the Appendix. The instrumented BW drill rod has a cross-sectional area of 1.82 square inches and an outside diameter of approximately 2.125 inches. Therefore, we calculate the inside diameter to be approximately 1.5 inches at the gauge location. The accelerometers and strain gauges, which are diametrically opposed near the middle of the instrumented rod, monitor acceleration and strain for each hammer blow. The analyzer converts the data to velocities and forces and computes the maximum transferred hammer energies with the "EFV" method described in ASTM D4633. Preliminary results are recorded and displayed in real time for each blow.



## 2.0 Testing and Observations

S&ME personnel were on site February 15, 2019, to observe and perform high-strain dynamic testing during SPT sampling on the Diedrich D-50 track-mounted drill rig operated by Justin Millwood of S&ME. The measurements were taken during drilling and sampling of a test hole at S&ME's office in Spartanburg, South Carolina. SPT energy measurements were recorded during seven sampling intervals at depths of approximately 28.2, 33.2, 38.2, 43.2, 48.2, 53.2, and 58.2 ft below the ground surface. The 33.2, 38.2, and 43.2-ft sample intervals did not meet the NCDOT blow count requirements and were not included in the data analysis. The information presented in the tables below summarizes the equipment and tooling used during the SPT energy measurements.

### Table 2-1: Drill Rig Information

Manufacturer	Diedrich
Model	D-50
Serial Number	382
Operator	J. Millwood
Carrier	Track

### Table 2-2: Hammer Information

Model / Type	Diedrich / Auto
Serial Number	382
Anvil Height (inches)	N/A – Anvil Built into Casing of Auto Hammer
Anvil Diameter (inches)	N/A – Anvil Built into Casing of Auto Hammer
Typical Drop Height (inches)	30
Typical Ram Weight (pounds)	140
Ram Serial Number	N/A

### Table 2-3: Drilling and Instrumented Rod Information

Drill Rod Type	BW
OD (inches)	2.125
ID (inches)	1.5
Cross-Sectional Area (in ² )	1.82
Typical Lengths (feet)	5
Instrumented Rod Type	BW (Serial No. 102)
OD (inches)	2.125
ID (inches)	1.5
Cross-Sectional Area (in ² )	1.82
Total Instrumented Rod Length (feet)	2.65
Length Below Gages (feet)	1.4
Split-Spoon Length (feet)	2.95



**Report of SPT Energy Measurements** S&ME Diedrich D-50 Track (Serial No. 382) Spartanburg, South Carolina S&ME Project No. 6235-17-020

#### **Dynamic Testing Results** 3.0

The total rod length from the instrumentation to the tip of the split-spoon sampler was determined by adding 4.35 ft to the drill rod length at each sample depth. The SPT Energy Measurement Data Summary tables in the Appendix present the test data from every hammer blow at each sampling interval, along with representative force and velocity traces for each test interval. Per ASTM D4633, only the blows from the final foot of each sample interval (i.e. the blows that determine the N-value) are considered when computing the average measurement values of each test interval.

The reported blow counts obtained by the drill rig personnel, a summary of the test data, and average computed hammer energy and transfer ratio values are provided in Table 3-1. Based on the test data, the automatic hammer on the Diedrich D-50 operated at an average rate of about 42 blows per minute (bpm) during dynamic testing. The measured average transferred hammer energy (EFV) of the four sample intervals tested ranged from 337 to 347 ft-lbs, which corresponds to Energy Transfer Ratio (ETR) values of 96.4 to 99.1%, respectively. Plots and tables of the following are also included in the Appendix and present the test data with depth for each test interval:

- Penetration vs. BLC¹
- Penetration vs. CSX⁴
- ETR vs. Rod Length

- Penetration vs. FMX²
- Penetration vs. VMX⁵
- Average ETR vs. Rod Length

- Penetration vs. EFV³
- Penetration vs. ETR⁶

### Table 3-1: Summary of Dynamic Testing Results

Data Set ID	Sample Depth (ft)	Drill Rod Length (ft)	Instrumentation to Sampler Tip Length (ft)	Blows per 6" Increment / N-value	Soil Sample Description (Piedmont Residual)	Avg. BPM	Avg. EFV (ft-lbs)	Avg. ETR (%)
1	28.2 – 29.7	29.0	33.35	1-3-5 / 8	SILTY SAND	41.8	338	96.5
2	48.2 – 49.7	49.0	53.35	3-4-4 / 8	SILTY SAND	41.6	337	96.4
3	53.2 – 54.7	54.0	58.35	6-8-10 / 18	SILTY SAND	41.2	340	97.3
4	58.2 – 59.7	59.0	63.35	20-21-24 / 45	SILTY SAND	41.7	347	99.1
					Overall Average	41.6	343	98.1

The overall average transferred hammer energy for the automatic hammer on the Diedrich D-50 track-mounted drill rig was 343 foot-pounds, with an average ETR of 98.1%.

³ EFV – Maximum Transferred Energy

⁵ VMX – Maximum Velocity

⁶ ETR – Energy Transfer Ratio – Ratio of Calculated Energy to Theoretical Energy of 140 Ib hammer falling 30 inches

¹ BLC - Blow Count per 6-in. increment ² FMX - Maximum Compressive Force

⁴ CSX – Maximum Compressive Stress



Report of SPT Energy Measurements S&ME Diedrich D-50 Track (Serial No. 382) Spartanburg, South Carolina S&ME Project No. 6235-17-020

"HIMMININ

DocuSigned by:

HG (ainmain 8C4BAC9729DB487

Gregory J. Canivan, P.E.

N.C. Registration No. 028593

**Technical Principal** 

## 4.0 Limitations of Report

This report has been prepared in accordance with generally accepted geotechnical engineering practice for specific application to this project. The conclusions contained in this report were based on the applicable standards of our profession in this geographic area at the time this report was prepared. No other warranty, express or implied, is made.

### 5.0 Closing

S&ME appreciates the opportunity to provide this report to the North Carolina Department of Transportation, Geotechnical Engineering Unit. Please let us know if you have any questions concerning this report.

Sincerely,

S&ME, Inc.

toneph With

Joseph R. Williamson, P.E. Project Engineer N.C. Registration No. 042168

Appendices:

- Appendix I Certificates of Proficiency
- Appendix II Instrumented Rod and Accelerometer Calibration Sheets
- Appendix III Diedrich D-50 Track (SN 382) SPT Energy Measurements Summary Plots and Tables
- Appendix IV SPT Energy Evaluation Form (Field Log)

Appendices

Appendix I



This documents that

## Joseph Williamson S&ME

has on October 31, 2017 achieved the rank of

## INTERMEDIATE

## on the Dynamic Measurement and Analysis Proficiency Test.

The individual identified on this document demonstrated to the degree granted above an understanding of theory, data quality evaluation, interpretation and signal matching for high strain dynamic testing of deep foundations. *It is recommended* that Individuals at the Intermediate level seek Advanced, Master or Expert levels through additional study within four years of the date of this document.

The ability of the individual named to provide appropriate knowledge and advice on a specific project is not implied or warranted by the Pile Driving Contractors Association or Pile Dynamics, Inc. The Pile Driving Contractors Association or Pile Dynamics, Inc. assumes no liability for foundation testing and analysis work performed by the bearer of this certificate. This certificate can be verified at www.PDAproficiencytest.com.

Steven A. Hall, Executive Director Pile Driving Contractors Association

Pile Dynamics, Inc.

Garland Likins, Senior Partner Pile Dynamics, Inc.

No. 2426



This documents that

## Greg Canivan S&ME Inc.

has on October 8, 2014 achieved the rank of

## MASTER

## on the Dynamic Measurement and Analysis Proficiency Test.

The individual identified on this document demonstrated to the degree granted above an understanding of theory, data quality evaluation, interpretation and signal matching for high strain dynamic testing of deep foundations. *It is recommended* that individuals at the Master level seek to attain Expert level through additional study within five years of the date of this document

The ability of the individual named to provide appropriate knowledge and advice on a specific project is not implied or warranted by the Pile Driving Contractors Association or Pile Dynamics, Inc. The Pile Driving Contractors Association or Pile Dynamics, Inc. assumes no liability for foundation testing and analysis work performed by the bearer of this certificate. This certificate can be verified at www.PDAproficiencytest.com.

Steven A. Hall, Executive Director Pile Driving Contractors Association

land Likins

Garland Likins, President Pile Dynamics, Inc

No. 721

Pile Dynamics, Inc.

Appendix II



**Smart Sensor** 

Smart Chip Programmed By XM. W. on 4DEC17 CRC Value 6407



#### **Smart Sensor**

Smart Chip Programmed By Z.M.W. on 4DEC17 CRC Value 1798

102BW		Cycle 1		
Sample	Force (lb)	Strain (µE)	Bridge 1 (V)	Bridge 2 (V)
1	0.00	0.00	0.00	0.00
2	1095.24	20.23	0.10	0.10
3	1886.37	34.92	0.16	0.16
4	3088.81	56.56	0.27	0.27
5	3858.71	71.04	0.34	0.34
6	5085.34	93.60	0.44	0.44
7	5908.54	108.17	0.51	0.51
8	7119.44	130.81	0.62	0.62
9	7983.55	146.15	0.69	0.69
10	9219.63	168.88	0.80	0.80
11	10084.73	184.60	0.88	0.87

Bridge 1		Bridge 2	
Force Calibration (lb/V)	11500.87	Force Calibration (lb/V)	11534.91
Offset	-2.16	Offset	-7.27
Correlation	0.999999	Correlation	0.999999
Strain Calibration (µE/V)	210.25	Strain Calibration (µE/V)	210.88
Offset	0.30	Offset	0.21
Correlation	0.999993	Correlation	0.999995

Force Strain Calibration	
EA (Kips)	54698.97
Offset	-18.70
Correlation	0.999994



102BW		Cycle 2		
Sample	Force (lb)	Strain (µE)	Bridge 1 (V)	Bridge 2 (V)
1	0.00	0.00	0.00	0.00
2	1120.61	20.82	0.10	0.10
3	1926.89	35.33	0.17	0.17
4	3094.72	56.55	0.27	0.27
5	3888.41	71.48	0.34	0.33
6	5144.16	93.89	0.44	0.44
7	5940.80	108.73	0.51	0.51
8	7193.60	131.98	0.62	0.62
9	8040.99	146.97	0.70	0.69
10	8848.65	162.51	0.77	0.77
11	10165.37	186.33	0.88	0.88

Bridge 1		Bridge 2	
Force Calibration (Ib/V)	11552.98	Force Calibration (lb/V)	11555.35
Offset	-0.36	Offset	15.25
Correlation	0.999997	Correlation	0.999998
Strain Calibration (µE/V)	211.64	Strain Calibration (µE/V)	211.68
Offset	0.03	Offset	0.31
Correlation	0.999993	Correlation	0.999993

Force Strain Calibration	
EA (Kips)	54586.80
Offset	-1.83
Correlation	0.999989



102BW		Cycle 3		
Sample	Force (lb)	Strain (µE)	Bridge 1 (V)	Bridge 2 (V)
1	0.00	0.00	0.00	0.00
2	728.19	13.83	0.07	0.06
3	1910.96	36.06	0.17	0.17
4	2721.96	50.60	0.24	0.24
5	3901.78	72.41	0.34	0.34
6	4724.79	87.76	0.41	0.41
7	5973.85	110.13	0.52	0.52
8	6776.59	125.45	0.59	0.59
9	8061.64	148.89	0.70	0.70
10	8899.20	163.80	0.77	0.77
11	9736.37	179.68	0.85	0.85

Bridge 1		Bridge 2	
Force Calibration (Ib/V)	11507.00	Force Calibration (Ib/V)	11517.03
Offset	-19.88	Offset	-19.40
Correlation	0.999996	Correlation	0.999997
Strain Calibration (µE/V)	211.37	Strain Calibration (µE/V)	211.56
Offset	0.34	Offset	0.35
Correlation	0.999987	Correlation	0.999992

Force Strain Calibration	
EA (Kips)	54438.54
Offset	-38.30
Correlation	0.999990



Bridge Excitation (V) Shunt Resitor (ohm)

 $_{\rm e}=30$ 

5 60.4k

Calibration Factors	102BW		
Bridge 1 (µE/V)	211.09	Bridge 2 (µE/V)	211.37
EA Factor (Kips)	54574.77	Area (in^2)	1.82

David Ben Calibrated by: _/ 6/1/2018

Pile Dynamics Inc 30725 Aurora Rd Solon, OH 44139

Traceable to N.I.S.T.

Appendix III



 Pile Dynamics, Inc.
 Page 1 of 1

 SPT Analyzer Results
 PDA-S Ver. 2018.30 - Printed: 2/17/2019

 DIEDRICH D-50 SN382
 28.2-29.7 FEET

 JRW
 Test date: 2/15/2019

 TEST HOLE 2
 AR: 1.82 in^2

 AR: 1.82 in^2
 SP: 0.492 k/ft3

 LE: 33.35 ft
 EM: 30000 ksi

 WS: 16807.9 ft/s
 SP: 0.492 k/ft3



F1 : [102 BW-1] 211.09 PDICAL (1) FF1 F2 : [102 BW-2] 211.37 PDICAL (1) FF1 A1 (PR): [K10181] 356 mv/6.4v/5000g (1) VF1 A2 (PR): [K10182] 368 mv/6.4v/5000g (1) VF1

3PM: Blows/N MX: Maximu								Compression Final Displa		алшиш
/MX: Maximu	,							Maximum E	0,	_
DMX: Maximu	ım Displace							Energy Tra		
BL#	LP	BC	BPM	FMX	VMX	DMX	CSX	DFN	EFV	ETR
	ft	/6"	bpm	kips	ft/s	in	ksi	in	ft-lb	%
1	28.70	1	1.9	43	20.9	6.00	23.6	6.00	330	94.3
2	28.87	3	42.1	42	21.3	2.46	23.2	2.00	340	97.1
3	29.03	3	42.1	44	21.0	2.34	24.1	2.00	339	97.0
4	29.20	3	41.7	45	21.2	2.00	24.8	2.00	341	97.3
5	29.30	5	41.8	44	20.8	1.67	24.4	1.20	341	97.4
6	29.40	5	42.2	45	19.9	1.53	24.5	1.20	326	93.2
7	29.50	5	41.5	45	19.9	1.47	24.9	1.20	339	97.0
8	29.60	5	41.8	42	19.1	1.42	23.2	1.20	333	95.1
9	29.70	5	41.5	45	19.7	1.37	24.7	1.20	342	97.6
		Average	41.8	44	20.4	1.78	24.2	1.50	338	96.5
		Std Dev	0.3	1	0.8	0.40	0.6	0.39	5	1.4
		Maximum	42.2	45	21.3	2.46	24.9	2.00	342	97.6
		Minimum	41.5	42	19.1	1.37	23.2	1.20	326	93.2
				N-	value: 8					

Sample Interval Time: 11.46 seconds.



 SPT Analyzer Results
 PDA-S Ver. 2018.30 - Printed: 2/17/2019

 DIEDRICH D-50 SN382
 48.2-49.7 FEET

 JRW
 Test date: 2/15/2019

 TEST HOLE 2
 AR: 1.82 in^2

 AR: 1.82 in^2
 SP: 0.492 k/ft3

 LE: 53.35 ft
 EM: 30000 ksi

 WS: 16807.9 ft/s
 SP: 0.492 k/ft3



F1 : [102 BW-1] 211.09 PDICAL (1) FF1 F2 : [102 BW-2] 211.37 PDICAL (1) FF1

Pile Dynamics, Inc.

A1 (PR): [K10181] 356 mv/6.4v/5000g (1) VF1 A2 (PR): [K10182] 368 mv/6.4v/5000g (1) VF1 Page 1 of 1

BPM: Blows/M FMX: Maximu VMX: Maximu DMX: Maximu	um Force um Velocity	ment					DFN: EFV:	Compressie Final Displa Maximum E Energy Tra	acement Energy	
BL#	LP	BC	BPM	FMX	VMX	DMX	CSX	DFN	EFV	ETR
	ft	/6"	bpm	kips	ft/s	in	ksi	in	ft-lb	%
1	48.37	3	1.9	47	20.4	2.02	26.0	2.00	326	93.2
2	48.53	3	41.5	45	19.7	2.07	24.6	2.00	349	99.6
3	48.70	3	41.6	44	19.8	2.10	24.1	2.00	346	98.8
4	48.83	4	41.7	47	20.7	1.81	25.6	1.50	343	97.9
5	48.95	4	41.6	43	19.8	1.78	23.4	1.50	341	97.5
6	49.08	4	41.7	42	19.3	1.67	23.3	1.50	334	95.4
7	49.20	4	41.8	41	19.8	1.57	22.4	1.50	339	96.9
8	49.33	4	41.4	42	21.3	1.66	23.1	1.50	340	97.0
9	49.45	4	41.9	42	22.0	1.69	22.9	1.50	336	96.1
10	49.58	4	41.5	41	22.4	1.55	22.5	1.50	334	95.4
11	49.70	4	40.9	41	21.7	1.50	22.3	1.50	333	95.1
		Average	41.6	42	20.9	1.66	23.2	1.50	337	96.4
		Std Dev	0.3	2	1.1	0.10	1.0	0.00	3	1.0
	ſ	Maximum	41.9	47	22.4	1.81	25.6	1.50	343	97.9
		Minimum	40.9	41	19.3	1.50	22.3	1.50	333	95.1
				N-	value: 8					

Sample Interval Time: 14.42 seconds.



SPT Analyzer Results PDA-S Ver. 2018.30 - Printed: 2/17/2019 DIEDRICH D-50 SN382 53.2-54.7 FEET JRW Test date: 2/15/2019 TEST HOLE 2 AR: 1.82 in^2 LE: 58.35 ft SP: 0.492 k/ft3 EM: 30000 ksi WS: 16807.9 ft/s



F1 : [102 BW-1] 211.09 PDICAL (1) FF1 F2 : [102 BW-2] 211.37 PDICAL (1) FF1

A1 (PR): [K10181] 356 mv/6.4v/5000g (1) VF1 A2 (PR): [K10182] 368 mv/6.4v/5000g (1) VF1

BPM: Blows/N FMX: Maximu								Compression Final Displa		aximum
VMX: Maximu								Maximum E		
DMX: Maximu		nent					ETR:	Energy Tra		
BL#	LP	BC	BPM	FMX	VMX	DMX	CSX	DFN	EFV	ETR
	ft	/6"	bpm	kips	ft/s	in	ksi	in	ft-lb	%
1	53.28	6	1.9	47	20.4	1.32	25.8	1.00	328	93.7
2	53.37	6	41.5	50	21.7	1.31	27.6	1.00	360	102.9
3	53.45	6	41.4	47	20.6	1.30	26.0	1.00	360	102.8
4	53.53	6	41.2	46	20.4	1.25	25.3	1.00	357	102.1
5	53.62	6	42.0	44	19.8	1.17	24.2	1.00	344	98.2
6	53.70	6	41.7	45	20.6	1.14	24.8	1.00	347	99.0
7	53.76	8	41.9	42	21.1	1.01	23.2	0.75	338	96.6
8	53.83	8	41.4	45	21.7	1.01	24.5	0.75	350	99.9
9	53.89	8	41.7	43	20.9	0.96	23.9	0.75	345	98.7
10	53.95	8	41.5	41	20.6	0.92	22.8	0.75	341	97.5
11	54.01	8	41.3	42	20.6	0.94	22.8	0.75	348	99.3
12	54.08	8	41.4	41	19.8	0.76	22.3	0.75	333	95.1
13	54.14	8	41.6	41	19.6	0.77	22.5	0.75	335	95.8
14	54.20	8	40.8	42	19.9	0.83	23.3	0.75	350	100.0
15	54.25	10	41.3	43	20.1	0.75	23.4	0.60	343	98.1
16	54.30	10	40.7	41	20.3	0.73	22.7	0.60	343	97.9
17	54.35	10	41.2	40	20.0	0.73	21.8	0.60	340	97.3
18	54.40	10	41.0	42	20.1	0.72	22.8	0.60	336	96.0
19	54.45	10	40.6	41	20.6	0.67	22.8	0.60	343	97.9
20	54.50	10	41.1	41	20.4	0.71	22.7	0.60	342	97.8
21	54.55	10	40.8	40	20.2	0.69	22.0	0.60	340	97.0
22	54.60	10	40.7	40	19.9	0.64	21.9	0.60	333	95.1
23	54.65	10	41.0	41	20.6	0.64	22.7	0.60	332	95.0
24	54.70	10	40.8	40	20.1	0.62	22.0	0.60	336	95.9

Pile Dynamics, Inc.

Page 1 of 2

#### Pile Dynamics, Inc. SPT Analyzer Results

Average	41.2	41	20.4	0.78	22.8	0.67	340	97.3
Std Dev	0.4	1	0.5	0.13	0.7	0.07	5	1.5
Maximum	41.9	45	21.7	1.01	24.5	0.75	350	100.0
Minimum	40.6	40	19.6	0.62	21.8	0.60	332	95.0
		N-\	/alue: 18					

Sample Interval Time: 33.41 seconds.



Pile Dynamics, Inc. SPT Analyzer Results Page 1 of 2 PDA-S Ver. 2018.30 - Printed: 2/17/2019

> 58.2-59.7 FEET Test date: 2/15/2019

DIEDRICH D-50 SN382 JRW TEST HOLE 2 AR: 1.82 in^2 LE: 63.35 ft WS: 16807.9 ft/s

SP: 0.492 k/ft3 EM: 30000 ksi



F1 : [102 BW-1] 211.09 PDICAL (1) FF1 F2 : [102 BW-2] 211.37 PDICAL (1) FF1 A1 (PR): [K10181] 356 mv/6.4v/5000g (1) VF1 A2 (PR): [K10182] 368 mv/6.4v/5000g (1) VF1

BPM: Blows								Compressio		laximum
FMX: Maxim								Final Displa		
VMX: Maxim		t						Maximum E		Datad
BL#	um Displacem LP	BC	BPM	FMX	VMX	DMX	CSX	Energy Tra DFN	EFV	ETR
DL#	ft	/6"	bpm	kips	ft/s	in	ksi	in	ft-lb	۲K %
1	58.23	20	1.9	47	20.9	0.65	25.7	0.30	337	96.4
2	58.25	20	41.2	44	20.5	0.57	24.0	0.30	346	98.8
3	58.28	20	41.1	45	20.7	0.58	24.8	0.30	359	102.5
4	58.30	20	42.4	46	20.7	0.52	25.4	0.30	353	101.0
5	58.33	20	42.0	46	21.0	0.50	25.0	0.30	349	99.8
6	58.35	20	41.7	44	20.1	0.51	24.2	0.30	350	100.1
7	58.38	20	41.9	46	20.9	0.52	25.1	0.30	348	99.5
8	58.40	20	41.2	44	19.8	0.50	24.3	0.30	352	100.7
9	58.43	20	41.9	44	19.9	0.52	24.4	0.30	347	99.3
10	58.45	20	41.2	44	20.1	0.50	24.2	0.30	352	100.6
11	58.48	20	42.1	43	19.7	0.50	23.7	0.30	347	99.1
12	58.50	20	41.9	44	19.9	0.51	24.2	0.30	347	99.1
13	58.53	20	41.4	43	20.0	0.50	23.7	0.30	351	100.3
14	58.55	20	41.8	44	20.3	0.49	24.0	0.30	352	100.5
15	58.58	20	41.5	44	20.1	0.52	24.2	0.30	354	101.2
16	58.60	20	41.9	44	20.2	0.50	24.0	0.30	342	97.6
17	58.63	20	41.1	43	20.0	0.53	23.8	0.30	354	101.0
18	58.65	20	41.8	44	20.0	0.50	24.1	0.30	344	98.4
19	58.68	20	41.0	43	19.6	0.52	23.5	0.30	347	99.2
20	58.70	20	41.5	43	19.7	0.51	23.6	0.30	348	99.4
21	58.72	21	41.4	44	20.2	0.52	24.0	0.29	349	99.6
22	58.75	21	41.1	42	19.7	0.51	23.3	0.29	351	100.3
23	58.77	21	41.4	42	20.0	0.51	23.2	0.29	345	98.6
24	58.80	21	40.6	43	20.1	0.51	23.4	0.29	352	100.7
25	58.82	21	41.3	43	20.3	0.52	23.9	0.29	352	100.5
26	58.84	21	41.0	43	20.0	0.51	23.4	0.29	347	99.0
27	58.87	21	41.5	42	19.6	0.51	23.1	0.29	341	97.4

Pile Dynamic	s, Inc.
SPT Analyzer R	esults

_

Page 2 of 2 PDA-S Ver. 2018.30 - Printed: 2/17/2019

28	58.89	21	41.1	43	19.8	0.51	23.8	0.29	345	98.6
29	58.91	21	41.2	42	19.9	0.51	23.2	0.29	342	97.6
30	58.94	21	41.2	42	20.0	0.51	23.3	0.29	349	99.8
31	58.96	21	41.5	43	20.0	0.49	23.6	0.29	345	98.6
32	58.99	21	41.7	43	20.0	0.49	23.9	0.29	344	98.4
33	59.01	21	41.2	44	20.3	0.50	24.2	0.29	346	98.8
34	59.03	21	41.6	44	20.0	0.49	24.1	0.29	340	97.1
35	59.06	21	41.5	44	20.2	0.50	24.2	0.29	349	99.8
36	59.08	21	41.8	42	19.6	0.49	22.9	0.29	343	97.9
37	59.10	21	41.6	44	20.3	0.50	24.1	0.29	351	100.2
38	59.13	21	42.0	44	20.2	0.50	24.1	0.29	344	98.4
39	59.15	21	41.8	43	20.0	0.50	23.6	0.29	340	97.2
40	59.18	21	41.8	43	20.0	0.51	23.6	0.29	350	99.9
41	59.20	21	41.5	41	19.5	0.49	22.5	0.29	340	97.2
42	59.22	24	41.9	43	20.1	0.50	23.8	0.25	348	99.4
43	59.24	24	42.0	42	19.6	0.48	22.8	0.25	342	97.7
44	59.26	24	41.7	43	19.8	0.47	23.4	0.25	344	98.2
45	59.28	24	41.8	42	19.7	0.47	23.1	0.25	345	98.7
46	59.30	24	41.9	45	20.5	0.47	24.6	0.25	355	101.4
47	59.33	24	42.0	44	20.4	0.45	24.1	0.25	344	98.3
48	59.35	24	41.9	44	20.5	0.46	24.1	0.25	351	100.3
49	59.37	24	41.8	43	20.4	0.47	23.9	0.25	343	98.1
50	59.39	24	42.0	45	20.5	0.48	24.6	0.25	349	99.8
51	59.41	24	41.5	44	20.6	0.47	24.4	0.25	354	101.1
52	59.43	24	42.3	44	20.3	0.47	24.1	0.25	350	100.1
53	59.45	24	42.0	44	20.4	0.48	24.2	0.25	355	101.4
54	59.47	24	42.0	44	20.6	0.48	24.3	0.25	352	100.5
55	59.49	24	41.9	43	20.1	0.47	23.5	0.25	350	99.9
56	59.51	24	41.9	43	20.2	0.47	23.5	0.25	344	98.2
57	59.53	24	42.2	45	20.9	0.49	24.9	0.25	353	101.0
58	59.55	24	41.9	43	20.4	0.47	23.7	0.25	344	98.3
59	59.58	24	42.0	43	20.4	0.49	23.4	0.25	353	100.8
60	59.60	24	42.0	42	20.5	0.47	23.3	0.25	345	98.4
61	59.62	24	42.2	45	20.9	0.49	24.6	0.25	351	100.2
62	59.64	24	42.2	41	20.1	0.47	22.7	0.25	335	95.6
63	59.66	24	41.8	44	21.0	0.48	24.3	0.25	344	98.3
64	59.68	24	42.2	43	20.6	0.48	23.4	0.25	342	97.7
65	59.70	24	41.9	43	20.9	0.48	23.7	0.25	348	99.5
		Verage	41.7	43	20.2	0.49	23.7	0.27	347	99.1
		Std Dev	0.4	1	0.4	0.02	0.5	0.02	5	1.3
		aximum	42.3	45	21.0	0.52	24.9	0.29	355	101.4
	M	inimum	40.6	41	19.5	0.45	22.5	0.25	335	95.6
				N-v	alue: 45					

Sample Interval Time: 91.98 seconds.

#### Pile Dynamics, Inc. SPT Analyzer Results

#### Summary of SPT Test Results

Project: DIEDR	ICH D-50 SN	382, Test D	ate: 2/15/2019	)										
BPM: Blows/Mi	nute										CSX: Compre	ssion Stress	Maximum	
FMX: Maximum	n Force										DFN: Final Displacement			
VMX: Maximum	n Velocity										EFV: Maximu	m Energy		
DMX: Maximum	n Displaceme	nt									ETR: Energy	Transfer Rati	io - Rated	
Instr.	Start	Final	Blows	N	N60	Average	Average	Average	Average	Average	Average	Average	Average	
Length	Depth	Depth	Applied	Value	Value	BPM	FMX	VMX	DMX	CSX	DFN	EFV	ETR	
ft	ft	ft	/6"			bpm	kips	ft/s	in	ksi	in	ft-lb	%	
33.35	28.20	29.70	1-3-5	8	13	41.8	44	20.4	1.78	24.2	1.50	338	96.5	
53.35	48.20	49.70	3-4-4	8	13	41.6	42	20.9	1.66	23.2	1.50	337	96.4	
58.35	53.20	54.70	6-8-10	18	29	41.2	41	20.4	0.78	22.8	0.67	340	97.3	
63.35	58.20	59.70	20-21-24	45	73	41.7	43	20.2	0.49	23.7	0.27	347	99.1	
			Ov	erall Average	e Values:	41.6	43	20.3	0.81	23.5	0.61	343	98.1	
				Standard D	Deviation:	0.4	1	0.6	0.50	0.8	0.49	6	1.8	
			Ove	erall Maximu	ım Value:	42.3	47	22.4	2.46	25.6	2.00	355	101.4	
			Ov	erall Minimu	ım Value:	40.6	40	19.1	0.45	21.8	0.25	326	93.2	



Appendix IV



# **SPT Energy Evaluation Form**

Project:	SPT ENERGY TESTING	
Project No.:	6235-17-020	
Boring No.:	TEST HOLE	

On-site Personnel					
Drilling Company:	S&ME, INC.				
Rig Operator:	J. MILLWOOD				
Engr/Geologist:	N/A				
Client Rep.:	N/A				
Analyzer Oper.:	J. WILLIAMSON				
-		/			

Rig/Ha	mmer Info
Drill Rig Make/Model:	DIEDRICH D-50
Carrier Type:	TRACK
Rig Serial No.:	382
- Hammer Type/Model:	DIEDRICH D-50
Hammer Serial No.:	382
- Hammer Drop System:	AUTOMATIC
Lubrication Condition:	PER MANUFACTURER
Manufacturer Recommended	
Operation Rate (bpm):	50
	30
- Typical Hammer Weight (lbs):	140
Anvil Dimension (in.):	N/A - BUILT IN
Drilling Method:	MUD ROTARY - 2-15/16" TRICONE
=	

Date:	2/15/2019
Weather:	CLEAR / 60s
Drill Rod Type:	5' LONG BWJ



-		Gage Info	
Gage		Serial No.	Calibration No.
Accel.	A3	K10181	356
ACCEI.	A4	K10182	368
Strain	F3	102BW-1	211.09
Sugli	F4	102BW-2	211.37

Date of Test	Test Depth Increment	Test Time Start / Stop	Length of Drill String (ft)	(LE) Length below Gages (ft)	Avg. Meas. Hammer Rate		SPT Blow	v Counts		Drop Height in Tolerance	
	(ft to ft)	(military)	(C)	(B) + (C) + (D)	(BPM)	6"	12"	18"	N-Value	(y/n)	
2/15/2019	28.2 - 29.7	14:57	29.0	33.35	42	1	3	5	8	Y	SI SA
2/15/2019	33.2 - 34.7	15;02	34.0	38.35	42	1	2	4	6	Y	SI S/
2/15/2019	38.2 - 39.7	15:07	39.0	43.35	42	1	2	2	4	Y	SI S/
2/15/2019	43.2 - 44.7	15:14	44.0	48.35	42	3	3	4	7	Y	SI SA
2/15/2019	48.2 - 49.7	15;23	49.0	53.35	42	3	4	4	8	Y	SI SA
2/15/2019	53.2 - 54.7	15:30	54.0	58.35	41	6	8	10	18	Y	SI SA
2/15/2019	58.2 - 59.7	15:43	59.0	63.35	42	20	21	24	45	Y	SI SA

Notes:

NOTE: (1) Note any unusual hammer operating conditions that affect the hammer performance, or changes in operating conditions (e.g. veritcality, weather, or lubrication between trials). (2) Note any changes in rod diameter along drill string and record locations of short rod sections.

With . onep

Prepared By (print/signature)

2/15/2019

Date

# Betts- CME 75 (SN 164447)



Betts Environmental 361 Airport Square Adel, Georgia 31620

April 18, 2019

Offices In: Daytona Beach, FL . Fort Myers, FL Fort Pierce, FL Gainesville, FL · Jacksonville, FL · Leesburg, FL · Miami, FL · Norcross, GA · Ocala, FL Orlando, FL · Palm Coast, FL · Panama City, FL Pensacola, FL Rockledge, FL · Sarasota, FL . St. Augustine, FL Tampa, FL West Palm Beach, FL

Subject: Dynamic Testing Report SPT Hammer Energy Measurement- CME-75 (S/N 164447) 156 N Johnson Street Newborn, Georgia 30056 UES Project 0950.1900024.0000

UES has completed the high strain dynamic (i.e. PDA) testing for the Soil Test Boring drill rig designated CME-75 in use at the above referenced project. Dynamic monitoring was conducted during performance of a soil test boring in order to determine energy transferred by the Standard Penetration Test hammer to the drill rods during split spoon sampling. The dynamic testing was conducted using the Pile Driving AnalyzerTM (PDA) Model 8G, which records, digitizes, and processes the force and acceleration signals. The dynamic testing was carried out in accordance with ASTM D4945 *Standard Test Method for High Strain Dynamic Testing of Piles and* ASTM D4633 *Standard Test Method for Energy Measurement for Dynamic Penetrometers*.

# **PROJECT DESCRIPTION**

### Overview

The SPT hammer calibration testing was performed on site at the property located at 156 N Johnson Street in Newborn, Georgia. The SPT hammer calibration testing was performed at five (5) depths during sampling of an SPT Test Boring on April 12, 2019. The SPT hammer calibration testing was performed the following sampling depths; 33.5 to 35.0 feet (Sample 1), 38.5 to 40.0 feet (Sample 2), 43.5 to 45.0 feet (Sample 3), 48.5 to 50.0 feet (Sample 4), and 53.5 to 55.0 feet (Sample 5).

# **SPT Testing Overview**

Numerous technical publications exist regarding the Standard Penetration Test (SPT). Of these publications, ASTM D1586 *Standard Test Method for Penetration Test and Split-Barrel Sampling of Soils* is considered to be the industry standard. This standard was last approved in January, 1999. In addition, U.S. Army Corp of Engineers Engineering Technical Letter (ETL) 1110-1-138 (dated March, 1988) is also a commonly used standard reference.

The Standard Penetration Test (SPT) consists of a drive weight assembly (i.e. hammer and anvil), split spoon sampler, and drill rods. The drive weight system consists of a 140 lb hammer raised by a number of mechanical means. The split spoon sampler is placed at the end of the drill rods in a borehole. The 140 lb hammer is raised 30 inches and then dropped to impact the drill rods. This procedure is repeated until the sampler has penetrated 18 inches into the underlying soil. The number of blows required to advance the split spoon sampler 12 inches is recorded as the "N" value for the test. Typically, the test is performed every 2  $\frac{1}{2}$  ft for the upper 10 ft of a boring and then at 5 ft intervals thereafter. The standard dimensions of the split spoon sampler are shown in Figure 1, while a typical SPT setup is presented in Figure 2.



Figure 1. Split Spoon Sampler (after Rogers, 2004, adapted from ASTM D1586).

There are three (3) types of SPT hammers currently used in drilling practice today: the donut hammer, the automatic hammer, and the safety hammer. In addition, there are three (3) main types of hammer lifting mechanisms: cathead-rope system, spooling wench, or chain driven systems. Drill rods vary from AW (1 ³/₄ in O.D.) to NW (2 5/8 in O.D.), with drill rod lengths varying between 2 ft to 10 ft increments. Methods for advancing boreholes for the SPT test include mud rotary drilling, hollow stem augers, and water drilling with steel casing.





Figure 2. Typical SPT Setup.

# **SPT Energy Measurements**

A number of factors can influence the SPT test and the subsequent N value. These include but are not limited to the following:

- Hammer
- Hammer Lifting System
- Operator Field Procedures
- Drill Rod Diameter and Length
- Borehole Drilling Method and Size
- Spilt Spoon Sampler

A graphical representation of various SPT system variables is provided in Figure 3.





Figure 3. SPT Testing System Variables (after Lamb, 1997).

In order to account for these system variables, standardized SPT corrections have been developed. The corrected blow count is referred to as the  $N_{60}$  value. The  $N_{60}$  value is derived from the assumed efficiency of the original SPT (Mohr) hammer (Rogers, 2004). The following equation defines  $N_{60}$  values:

$$N_{60} = C_{60}C_bC_sC_rN$$

Where:

 $N_{60} = SPT N$  Value corrected for field procedures and apparatus

 $C_{60}$  = Hammer Efficiency Correction

 $C_b$  = Borehole Diameter Correction

 $C_s =$ Sample Barrel Correction

 $C_r = Rod Length Correction$ 

N = Raw SPT value

In addition, the N value is influenced by the overburden pressure. Laio and Whitman (1986) proposed the following overburden correction for  $N_{60}$ , termed  $(N_1)_{60}$ :

$$(N_1)_{60} = N_{60} \frac{\sqrt{2000 \, psf}}{\sigma'_{v}}$$



Where:  $\sigma'_{v} =$  Effective vertical overburden stress

The hammer efficiency correction ( $C_{60}$ ) is based on the Energy Transfer Efficiency (ER_i) and the 60% of the theoretical transferred hammer energy of 350 ft-lbs (i.e. 140 lbs multiplied by a 30 inch drop). The following equations show the derivation of  $C_{60}$ :

$$ER_i = \frac{E_i}{E_{th}}$$

Where:

 $ER_i = Energy$  Transfer Efficiency  $E_i = Measured$  Transferred Energy  $E_{th} = Theoretical$  Transferred Energy (i.e. 350 ft-lb)

and

$$C_{60} = \frac{ER_i}{60\%}$$

For liquefaction analysis using SPT N values, transferred energy measurements are required to determine  $(N_1)_{60}$ . The methods for determining the normalized penetration resistance for liquefaction potential are presented in ASTM D6066 *Standard Practice for Determining the Normalized Penetration Resistance of Sands for Evaluation of Liquefaction Potential*.

Transferred (i.e. delivered) energy measurements of SPT testing (i.e. the energy delivered by the hammer to the drill rods) are commonly taken in engineering practice through the use of several types of instruments. The most common of these is the Pile Driving Analyzer (PDA), developed and marketed by Pile Dynamics Inc. of Cleveland, Ohio. The PDA is a computer fitted with a data acquisition and a signal conditioning system and is typically used to conduct high strain dynamic load testing of driven piles, which is analogous to the SPT test. Strain gages and accelerometers which are connected to the PDA are attached to the pile or drill rods (for SPT testing). During pile driving or SPT testing, the strain and acceleration signals are recorded and processed for each hammer blow. The strain signal is converted to a force record and the acceleration signal is converted to a velocity record. The PDA saves selected hammer blows containing this information to disk and determines the compressive stresses, displacement, and



energy at the point of measurement (pile top). The maximum transferred energy (EMX) is derived from the dynamic measurements using the following equation:

$$EMX = \int_{b}^{a} F(t)V(t)dt$$

Where:

a = Time Energy Transfer Begins

b = Time Energy Transfer End

F = Force

V = Velocity

t = Time

Refer to Abou-matar and Goble (1997) for additional details of SPT energy measurements using the PDA. Literature regarding the PDA is provided in the Appendix.

## SPT Rig/Hammer System

The tested drill rig is designated CME-75 and is manufactured by Central Mine Equipment, Inc. The drill rig was parked on existing grade in a grassy area for this project. We understand that the drill rig was built on October 29, 1984 and is identified with Serial Number 164447. The CME-75 drill rig is fitted with an automatically operated hammer system. The drill rig and SPT hammer were operated by Mr. Chris Golden.

The method of drilling for the rig during testing was hollow stem auger (HSA), with Standard Penetration Testing being performed with AWJ drill rods. AWJ drill rod sections have nominal outside diameter of 1-5/8 inches and wall thickness of 3/16 inches. The instrumented sub-assembly (i.e. where gauges were attached) consisted of a two feet long section of AWJ rod that was threaded into the top drill rod at each testing interval.

## **Dynamic Load Test Instrumentation**

The dynamic pile testing instrumentation consisted of a 2-feet long AWJ instrumented drill rod which is fitted with two strain gauges by Pile Dynamic Inc., in addition two (2) accelerometer transducers are attached a distance of approximately 1 foot below the top (i.e. in the center) of a two feet long instrumented AWJ drill rod. One strain gauge and one accelerometer are on opposite faces of the sub-assembly to minimize the effects of uneven hammer impact and rod bending.

A Model 8G Pile Driving AnalyzerTM (PDA), manufactured by Pile Dynamics Inc., was used to collect the instrumentation data. The PDA is a computer fitted with a data acquisition and a



signal conditioning system. During driving, the strain and acceleration signals are recorded and processed for each hammer blow. The strain signal is converted to a force record and the acceleration signal is converted to a velocity record. The sampling frequency used during the SPT Energy Measurement Testing was 20,000 hertz (20 kHz). The PDA saves selected hammer blows containing this information to disk and determines the energy at the point of measurement.

# DYNAMIC TESTING RESULTS

## Hammer Performance

The transferred energy monitored during the sampling is summarized in Table 1. Note that the values are those recorded during the second and third 6-inch sampling interval at each depth. Hammer Efficiency is based on measured transferred energy divided by the energy generated with a 140 pound hammer dropping 30 inches (0.35 kip-ft).

SPT 1 Sample Depth	SPT Blow Count	Hammer Efficiency (%)							
(feet)	(Per 6 inch)	Min	Max	Average	Standard Deviation				
33.5 to 35.0	3-4-4	73.70	75.96	75.02	0.71				
38.5 to 40.0	5-12-14	70.58	74.11	72.25	0.92				
43.5 to 45.0	5-12-21	70.22	74.76	71.98	1.13				
48.5 to 50.0	8-12-25	71.29	74.62	72.84	0.80				
53.5 to 55.0	20-22-29	70.49	74.32	72.31	0.78				
OVERA	ALL ¹ :	71.26	74.75	72.88	0.87				

## Table 1. CME-75 Rig SPT Energy Measurement Summary

The following figure shows the SPT rig tested.



Figure 1: SPT drill rig.



UES Project No. 0950.1900024.0000 April 18, 2018 Page 9 of 9

#### **CONCLUSIONS AND RECOMMENDATIONS**

It is our opinion that the SPT hammer on the drill rig designated CME-75 is operating within a normal range for a semi-automatic SPT hammer.

UES appreciates the opportunity to provide this report. This report is for the sole use of this project and should not be relied upon otherwise. Should the project change significantly, we can review and modify our recommendations as needed. If you have questions concerning the contents herein, please contact us.

Sincerely,

**UNIVERSAL ENGINEERING SCIENCES, INC.** Universal Florida Certificate of Authorization No. 549

Joshua C. Adams

Deep Foundation Engineer HSDPT Certified – Master Level



Attachments: PDA Data Output (PDIPLOT Graphs and Tables)



Universal Engineering Sciences, Inc. - PDIPLOT2 Ver 2017.2.58.3 - Case Method & iCAP® Results Printed: 18-April-2019 Test started: 12-April-2019



Universal Engineering Sciences, Inc. Case Method & iCAP® Results

Page 1 PDIPLOT2 2017.2.58.3 - Printed 18-April-2019

Georg OP: N	gia SPT - S	PT 2 Sa	mple1				Rod of ar	ea 1.18 s	quare incl	hes on C e: 12-Api	
AR:	1.18 ir	2									192 k/ft ³
LE:	44.00 ft									EM: 30,0	
	16,807.9 f/										.60
			thad Car	a aity ( IC	\ \	COD	Compre	nation St			
	Maximum				)				ress at Bo		lie
	Compress				d Saarah		: Maximu			ing Corr	action)
	Tension S		ximum - r	ull Reco	d Search				ude Damp		ection)
	Hammer			بريام مرا	idual Cana		. Energy	Transfer	Ratio - Ra	aleu	
CSI:					idual Sens		001			050	
BL#	Depth	BLC	RMX	CSX	TSX	STK	CSI	CSB	DMX	SFR	ETR
	ft	bl/ft	kips	ksi	ksi	ft	ksi	ksi	in	kips	(%)
1	33.64	7	6.6	20.8	11.6	0.00	20.8	15.0	1.88	3	74.72
2	33.77	7	7.2	20.8	11.9	0.00	21.0	14.5	1.69	4	74.72
3	33.91	7	7.9	20.6	11.4	0.00	21.1	15.1	1.90	4	75.75
4	34.05	7	7.3	20.8	11.7	0.00	21.1	14.6	1.80	4	75.86
5	34.18	7	6.8	20.9	11.7	0.00	21.1	14.6	1.64	3	75.54
6	34.32	7	6.1	20.8	11.7	0.00	21.1	15.0	1.76	2	75.96
7	34.45	7	6.8	21.0	11.2	0.00	21.3	15.3	1.64	3	73.70
8	34.59	7	5.7	20.7	10.9	0.00	21.0	14.7	1.64	2	75.25
9	34.73	7	5.6	20.5	10.6	0.00	20.8	14.6	1.64	2	74.95
10	34.86	7	6.3	20.6	9.9	0.00	20.9	14.4	1.64	3	73.99
11	35.00	7	6.1	20.5	9.9	0.00	20.8	14.6	1.64	3	74.78
	A	verage	6.6	20.7	11.1	**	21.0	14.8	1.71	3	75.02
	Std. Dev. 0.7 0.2 0.7						0.1	0.3	0.10	1	0.71
					11.9	**	21.3	15.3	1.90	4	75.96
		nimum	5.6	20.5	9.9	**	20.8	14.4	1.64	2	73.70
	Total number of blows analyzed: 11										

IY.

BL# Sensors

1-11 F1: [357AWJ1] 212.0 (1.02); F4: [357AWJ2] 211.2 (1.02); A2: [55385] 915.0 (0.98); A3: [50148] 1065.0 (0.98)

BL# Comments

11 End of Set 1. n=10

Time Summary

Drive 13 seconds 1:46 PM - 1:46 PM BN 1 - 11

Universal Engineering Sciences, Inc. - PDIPLOT2 Ver 2017.2.58.3 - Case Method & iCAP® Results Printed: 18-April-2019 Test started: 12-April-2019



	rsal Engine Method & i			с.	Page 1 PDIPLOT2 2017.2.58.3 - Printed 18-April-2019							
Georg <u>OP: N</u>	ia SPT - S VT	PT 2 Sa	mple 2			Rod of area 1.18 square inches on CME 75 Date: 12-April-2019						
AR:	1.18 in	2				SP: 0.492 k/ft ³						
LE:	50.00 ft									EM: 30,0	00 ksi	
WS: 1	6,807.9 f/s	6									60	
RMX:	Maximum	Case Me	thod Cap	acity (JC)		CSB:	: Compre	ession Str	ess at Bo	ttom of P	lile	
CSX:	Compress	ion Stres	s Maximu	im			: Maximu					
TSX:	Tension S	tress Ma	ximum - F	ull Recor	d Search				ude Damp	oing Corre	ection)	
STK:	Hammer S	Stroke				ETR:	Energy	Transfer	Ratio - Ra	ated		
CSI:	Compress	ion Stres	s Maximu	ım - Indivi	dual Sens	or						
BL#	Depth	BLC	RMX	CSX	TSX	STK	CSI	CSB	DMX	SFR	ETR	
	ft	bl/ft	kips	ksi	ksi	ft	ksi	ksi	in	kips	(%)	
1	38.55	21	7.2	20.8	13.8	0.00	20.9	15.4	1.31	3	71.76	
2	38.60	21	7.1	20.6	11.3	0.00	20.6	14.9	0.82	3	72.14	
3	38.65	21	7.1	20.2	10.8	0.00	20.5	14.7	0.74	3	71.63	
4	38.69	21	6.4	20.1	10.2	0.00	20.3	14.2	0.67	3	71.53	
5	38.74	21	6.9	20.1	9.8	0.00	20.3	14.5	0.58	3	71.16	
6	38.79	21	6.6	20.6	9.5	0.00	20.9	14.4	0.58	3	73.06	
7	38.84	21	6.7	20.4	8.8	0.00	20.4	14.7	0.58	3	73.52	
8	38.89	21	6.6	20.1	8.5	0.00	20.1	13.9	0.58	3	72.45	
9	38.94	21	7.5	20.4	7.9	0.00	20.4	14.3	0.58	3	70.58	
10	38.98	21	6.9	20.8	8.3	0.00	21.0	14.9	0.58	3	72.72	
11	39.03	21	6.6	20.9	7.7	0.00	21.0	14.7	0.58	3	72.58	
12	39.08	21	6.6	21.0	7.9	0.00	21.2	14.8	0.58	3	72.44	
13	39.13	21	6.4	21.1	7.6	0.00	21.1	14.7	0.58	3	74.07	
14	39.18	21	6.4	21.0	7.7	0.00	21.2	14.4	0.58	3	71.92	
15	39.23	21	6.1	21.3	7.6	0.00	21.3	14.8	0.58	3	72.94	
16	39.27	21	6.3	20.9	7.7	0.00	21.2	15.0	0.58	2	74.11	
17	39.32	21	6.4	20.7	7.3	0.00	20.8	14.4	0.58	3	71.63	
18	39.37	21	6.8	21.1	6.9	0.00	21.1	15.2	0.58	3	71.24	
19	39.42	21	6.9	20.2	6.8	0.00	20.4	14.9	0.58	3	70.74	
20	39.47	21	6.4	21.0	6.7	0.00	21.0	15.1	0.58	3	73.12	
21	39.52	21	6.9	20.9	6.3	0.00	21.0	15.2	0.58	3	71.50	
22	39.56	21	7.0	21.1	6.1	0.00	21.3	15.1	0.58	3	71.65	
23	39.61	21	6.3	20.9	5.9	0.00	21.0	15.0	0.58	3	72.81	
24	39.66	21	6.6	20.9	6.0	0.00	21.0	15.0	0.58	3	72.22	
25	39.71	21	7.3	20.4	5.7	0.00	20.7	14.9	0.58	3	72.04	
26	39.76	21	6.1	19.9	5.8	0.00	20.0	14.2	0.58	2	72.76	
27	39.81	21	6.4	20.2	5.5	0.00	20.5	14.8	0.58	3	70.77	
28	39.85	21	6.5	20.3	5.3	0.00	20.5	14.7	0.58	3	73.48	
29	39.90	21	6.8	21.1	5.2	0.00	21.3	15.2	0.58	3	73.35	
30	39.95	21	6.6	20.3	5.2	0.00	20.6	14.3	0.58	3	71.99	
31	40.00	21	7.2	20.7	5.3	0.00	20.9	15.1	0.58	3	71.85	
	A	verage	6.7	20.6	7.6	**	20.8	14.8	0.62	3	72.25	
		d. Dev.	0.3	0.4	2.0	**	0.4	0.4	0.14	0	0.92	
		ximum	7.5	21.3	13.8	**	21.3	15.4	1.31	3	74.11	
	Mii	nimum	6.1	19.9	5.2	**	20.0	13.9	0.58	2	70.58	
				Total nun	nhor of hic	we analy	12 ·hazı					

Total number of blows analyzed: 31

BL# Sensors

1-31 F1: [357AWJ1] 212.0 (1.12); F4: [357AWJ2] 211.2 (1.12); A2: [55385] 915.0 (0.88); A3: [50148] 1065.0 (0.88) Universal Engineering Sciences, Inc. Case Method & iCAP® Results

Georgia SPT - SPT 2 Sample 2 OP: NVT

BL# Comments

31 end of set 2. N=28

Time Summary

Drive 41 seconds 1:56 PM - 1:56 PM BN 1 - 31

Page 2 PDIPLOT2 2017.2.58.3 - Printed 18-April-2019

Rod of area 1.18 square inches on CME 75 Date: 12-April-2019 Universal Engineering Sciences, Inc. - PDIPLOT2 Ver 2017.2.58.3 - Case Method & iCAP® Results Printed: 18-April-2019 Test started: 12



P® Results Test started: 12-April-2019

	rsal Engine Method &			С.	Page 1 PDIPLOT2 2017.2.58.3 - Printed 18-April-2019								
Georg OP: N	gia SPT - S IVT	PT 2 Sa	mple 3			I	Rod of area 1.18 square inches on CME 75 Date: 12-April-2019						
AR:	1.18 ir	2				SP: 0.492 k/ft ³							
LE:	55.00 ft									EM: 30,0			
	6,807.9 f/										.60		
	Maximum		athod Can	acity (IC)	1	CSB	Compre	ssion Str	ess at Bo				
	Compress						: Maximu						
	Tension S				d Search				ude Damp		ection)		
	Hammer								Ratio - Ra				
	Compress		s Maximi	ım - Indivi	dual Sens		Linergy	Transfer					
BL#	Depth	BLC	RMX	CSX	TSX	STK	CSI	CSB	DMX	SFR	ETR		
DL#	ft	bl/ft	kips	ksi	ksi	ft	ksi	ksi	in	kips	(%)		
1	43.54	24	4.9	21.1	11.4	0.00	21.6	13.3	1.10	3	73.56		
2	43.58	24	3.7	20.8	11.4	0.00	21.3	12.7	1.14	2	74.69		
2	43.63	24	6.7	20.8	11.6	0.00	21.3	14.4	1.14	2	74.09		
									1.14				
4	43.67	24	6.7	20.8	10.9	0.00	21.4	13.9		4 3	73.33		
5	43.71	24	6.5	20.4	11.4	0.00	20.9	13.8	1.12		74.76 73.27		
6	43.75	24	7.4	20.9	9.8	0.00	21.5	14.5	0.83	4			
7	43.79	24	7.7	21.0	8.8	0.00	21.6	14.4	0.54	4	71.45		
8	43.83	24	7.8	20.7	7.1	0.00	21.3	14.5	0.50	4	72.71		
9	43.88	24	7.5	20.6	6.4	0.00	21.2	14.7	0.50	3	72.31		
10	43.92	24	7.4	21.0	6.1	0.00	21.6	14.8	0.50	3	72.14		
11	43.96	24	7.8	20.7	6.5	0.00	21.4	14.8	0.50	4	72.51		
12	44.00	24	8.3	21.1	6.2	0.00	21.9	15.1	0.50	4	72.92		
13	44.04	24	7.9	20.3	5.9	0.00	20.8	14.8	0.50	4	72.14		
14	44.08	24	7.7	20.5	5.6	0.00	21.2	14.6	0.50	4	71.40		
15	44.13	24	7.4	20.5	5.4	0.00	21.3	14.9	0.50	3	72.12		
16	44.17	24	7.0	20.7	5.6	0.00	21.4	14.6	0.50	3	71.96		
17	44.21	24	7.9	20.8	5.4	0.00	21.5	15.1	0.50	4	71.86		
18	44.25	24	7.9	20.2	4.5	0.00	20.7	14.4	0.50	4	71.91		
19	44.29	24	7.3	20.7	4.4	0.00	21.5	14.2	0.50	4	71.45		
20	44.33	24	7.2	20.2	4.2	0.00	20.7	14.2	0.50	3	71.52		
21	44.38	24	7.4	20.4	3.6	0.00	21.1	14.4	0.50	4	71.86		
22	44.42	24	7.6	20.7	3.8	0.00	21.3	14.4	0.50	4	70.36		
23	44.46	24	7.8	20.5	3.0	0.00	21.4	14.7	0.50	4	72.62		
24	44.50	24	7.7	20.3	2.6	0.00	20.9	14.1	0.50	4	70.92		
25	44.54	24	7.7	20.2	2.6	0.00	20.8	13.9	0.50	4	71.70		
26	44.58	24	7.7	20.4	2.4	0.00	21.1	14.3	0.50	4	70.31		
27	44.63	24	7.3	20.1	2.1	0.00	20.8	14.0	0.50	4	71.44		
28	44.67	24	7.9	20.2	2.3	0.00	20.7	14.0	0.50	4	70.22		
29	44.71	24	7.6	20.3	2.3	0.00	20.9	14.2	0.50	4	71.23		
30	44.75	24	7.2	20.1	2.7	0.00	20.7	14.1	0.50	4	71.27		
31	44.79	24	7.3	20.0	2.4	0.00	20.6	13.8	0.50	4	71.10		
32	44.83	24	7.7	20.2	2.5	0.00	20.8	14.3	0.50	4	70.64		
33	44.88	24	7.4	20.1	2.6	0.00	20.7	13.8	0.50	4	71.58		
34	44.92	24	8.0	20.0	2.7	0.00	20.5	14.0	0.50	4	70.62		
35	44.96	24	8.2	20.1	2.6	0.00	20.7	14.2	0.50	4	71.18		
36	45.00	24	8.1	20.2	2.8	0.00	20.6	14.3	0.51	4	71.80		
		verage	7.4	20.5	5.3	**	21.1	14.3	0.60	4	71.98		
		d. Dev.	0.9	0.3	3.1	**	0.4	0.5	0.23	0	1.13		
		ximum	8.3	21.1	11.6	**	21.9	15.1	1.21	4	74.76		
	IVII	nimum	3.7	20.0 Total pur	2.1 ober of blo		20.5	12.7	0.50	2	70.22		

Total number of blows analyzed: 36

Universal Engineering Sciences, Inc. Case Method & iCAP® Results

Page 2 PDIPLOT2 2017.2.58.3 - Printed 18-April-2019

Rod of area 1.18 square inches on CME 75

Date: 12-April-2019

Georgia SPT - SPT 2 Sample 3 OP: NVT

BL# Sensors

1-36 F1: [357AWJ1] 212.0 (1.12); F4: [357AWJ2] 211.2 (1.12); A2: [55385] 915.0 (0.88); A3: [50148] 1065.0 (0.88)

**BL#** Comments

36 End of Set 3. n=33

**Time Summary** 

Drive 49 seconds 2:14 PM - 2:14 PM BN 1 - 36



Universal Engineering Sciences, Inc. - PDIPLOT2 Ver 2017.2.58.3 - Case Method & iCAP® Results

	ersal Engin Method &			IC.	Page 1 PDIPLOT2 2017.2.58.3 - Printed 18-April-2019							
Georo OP: N	gia SPT - S IVT	SPT 2 Sai	mple 4			Rod of area 1.18 square inches on CME 75 Date: 12-April-2019						
AR: LE:	1.18 ir 55.00 ft										92 k/ft ³	
	16,807.9 f/	's								JC: 0	.60	
	Maximum								ress at Bo	ttom of P	lie	
	Compres				d Coorob		: Maximu			ing Corr	ootion)	
	Tension S Hammer		ximum - r	-ull Recor	u Search				ude Damp Ratio - Ra		ection)	
CSI:		sion Stres	s Maximu	um - Indivi	dual Sens		. Energy	Transier				
BL#	Depth	BLC	RMX	CSX	TSX	STK	CSI	CSB	DMX	SFR	ETR	
	ft	bl/ft	kips	ksi	ksi	ft	ksi	ksi	in	kips	(%)	
1	48.53	30	4.6	21.3	10.7	0.00	21.5	15.0	1.17	1	72.09	
2	48.57	30	4.8	20.9	9.8	0.00	21.1	13.1	0.91	2	72.78	
3	48.60	30	4.8	21.0	9.2	0.00	21.0	13.8	0.74	2	72.83	
4	48.63	30	4.7	21.2 21.2	8.7	0.00	21.2	14.1	0.62	2	71.63	
5 6	48.67 48.70	30 30	4.5 4.3	21.2	8.3 8.6	0.00 0.00	21.2 21.1	14.6 14.3	0.62 0.63	1 2	72.96 73.93	
7	48.70	30	4.3 5.6	21.0	8.2	0.00	21.1	14.3	0.60	2	73.49	
8	48.77	30	6.0	21.0	8.0	0.00	21.0	15.2	0.54	2	72.26	
9	48.80	30	5.0	21.4	7.8	0.00	21.5	14.4	0.56	2	74.62	
10	48.83	30	7.3	21.1	7.6	0.00	21.2	15.6	0.53	3	72.65	
11	48.87	30	6.8	21.4	7.1	0.00	21.4	15.6	0.51	3	72.17	
12	48.90	30	7.3	21.4	7.0	0.00	21.5	15.8	0.52	3	72.82	
13	48.93	30	6.6	21.4	6.6	0.00	21.5	15.5	0.50	2	72.61	
14	48.97	30	6.6	20.8	6.7	0.00	20.9	15.4	0.49	2	71.29	
15	49.00	30	6.9	20.9	6.5	0.00	21.0	15.8	0.50	2	73.55	
16	49.03	30	7.4	21.0	6.1	0.00	21.1	15.7	0.46	3	72.67	
17 18	49.07 49.10	30 30	7.2 7.1	21.1 21.5	5.9 6.0	0.00 0.00	21.2 21.7	15.9 15.8	0.47 0.46	3 3	73.71 74.24	
19	49.10	30	6.9	21.3	6.1	0.00	21.7	15.3	0.40	2	73.00	
20	49.17	30	7.1	21.1	5.8	0.00	21.1	15.9	0.40	2	73.21	
21	49.20	30	7.3	21.2	5.9	0.00	21.3	16.0	0.41	2	73.71	
22	49.23	30	7.2	21.3	5.5	0.00	21.5	15.9	0.40	2	72.58	
23	49.27	30	7.2	21.0	5.0	0.00	21.1	15.9	0.40	2	73.35	
24	49.30	30	7.2	21.2	4.6	0.00	21.2	16.1	0.41	2	73.66	
25	49.33	30	7.5	21.1	4.0	0.00	21.1	15.8	0.42	3	73.49	
26	49.37	30	8.0	21.2	3.3	0.00	21.4	14.8	0.40	3	71.73	
27 28	49.40 49.43	30 30	8.0 8.0	21.3 21.1	3.0 3.2	0.00 0.00	21.4 21.1	15.8 15.8	0.40 0.40	3 3	72.73 73.24	
20 29	49.43	30	8.0 8.9	21.1	2.9	0.00	21.1	16.0	0.40	3	73.44 73.44	
30	49.50	30	8.3	20.9	3.2	0.00	21.0	15.8	0.40	3	73.26	
31	49.53	30	8.4	21.2	2.8	0.00	21.2	15.5	0.40	3	71.45	
32	49.57	30	8.7	21.5	2.8	0.00	21.7	15.7	0.40	3	73.66	
33	49.60	30	8.6	21.5	2.8	0.00	21.8	16.2	0.40	3	72.79	
34	49.63	30	8.8	21.1	3.0	0.00	21.3	15.8	0.40	3	72.19	
35	49.67	30	9.2	21.3	2.9	0.00	21.6	15.2	0.40	4	71.50	
36	49.70	30	9.0	21.0	3.0	0.00	21.2	15.9	0.40	3	74.18	
37	49.73	30	9.2	21.2	3.0	0.00	21.2	15.7	0.40	3	72.21	
38 39	49.77 49.80	30 30	9.3 9.6	21.2 21.4	2.9 2.8	0.00 0.00	21.4 21.6	15.9 15.9	0.40 0.40	4 4	72.74 72.69	
39 40	49.80 49.83	30 30	9.6 10.3	21.4 21.5	2.8 2.7	0.00	21.6 21.8	15.9 15.9	0.40	4	72.69 71.86	
40	49.87	30	10.3	21.5	3.1	0.00	21.3	16.2	0.40	4	72.14	
42	49.90	30	10.5	21.5	3.1	0.00	21.7	15.8	0.40	4	73.82	
43	49.93	30	11.0	20.5	3.1	0.00	20.6	15.9	0.40	4	71.92	
44	49.97	30	10.7	21.5	3.0	0.00	21.6	16.4	0.40	4	71.82	
45	50.00	30	11.0	21.0	3.2	0.00	21.1	15.8	0.40	4	72.92	

Universal Engineering Sciences, Inc. Case Method & iCAP® Results

#### Page 2 PDIPLOT2 2017.2.58.3 - Printed 18-April-2019

Georg	jia SPT - S	PT 2 Sa	mple 4		Rod of area 1.18 square inches on CME 75						
OP: N	VT		-						Date	e: 12-Api	ril-2019
BL#	Depth	BLC	RMX	CSX	TSX	STK	CSI	CSB	DMX	SFR	ETR
	ft	bl/ft	kips	ksi	ksi	ft	ksi	ksi	in	kips	(%)
	Average		7.6	21.2	5.2	**	21.3	15.5	0.48	3	72.84
	Sto	Std. Dev.		0.2	2.3	**	0.3	0.7	0.15	1	0.80
	Maximum 11.0			21.5	10.7	**	21.8	16.4	1.17	4	74.62
	Mi	nimum	4.3	20.5	2.7	**	20.6	13.1	0.40	1	71.29
				Total nur	nhar of hl	owe analy	170d. 15				

Total number of blows analyzed: 45

#### BL# Sensors

1-45 F1: [357AWJ1] 212.0 (1.12); F4: [357AWJ2] 211.2 (1.12); A2: [55385] 915.0 (0.88); A3: [50148] 1065.0 (0.88)

#### **BL#** Comments

45 end of set 4. n=39

**Time Summary** 

Drive 1 minute 2 seconds 2:27 PM - 2:28 PM BN 1 - 45



Universal Engineering Sciences, Inc. - PDIPLOT2 Ver 2017.2.58.3 - Case Method & iCAP® Results

	ersal Engine Method &			C.	Page 1 PDIPLOT2 2017.2.58.3 - Printed 18-April-2019							
Georg OP: N	gia SPT - S IVT	SPT 2 Sa	mple 5			Rod of area 1.18 square inches on CME 75 Date: 12-April-2019						
AR: LE: WS: 2	1.18 ir 60.00 ft /16,807.9 f									EM: 30,0	92 k/ft³ 00 ksi 60	
RMX:	Maximum	Case Me							ess at Bo			
	Compress Tension S				d Search		: Maximu Skin Fri		cement ude Damp	ina Corre	ection)	
	Hammer								Ratio - Ra		outony	
<u>CSI:</u>	Compress								510/	0.55		
BL#	Depth ft	BLC bl/ft	RMX kips	CSX ksi	TSX ksi	STK ft	CSI ksi	CSB ksi	DMX in	SFR kips	ETR (%)	
1	53.52	47	6.4	21.7	8.8	0.00	21.8	17.7	1.47	кірз 1	72.27	
2	53.54	47	7.4	21.4	10.0	0.00	21.5	15.4	1.55	3	72.51	
3	53.56	47	8.1	21.4	9.6	0.00	21.4	15.5	1.55	4	71.52	
4	53.58	47	8.2	21.6	9.6	0.00	21.6	16.4	1.31	3	72.20	
5 6	53.61 53.63	47 47	8.7 9.0	21.0 21.0	8.1 6.1	0.00 0.00	21.2 21.2	15.8 16.1	0.66 0.54	4 3	72.13 71.12	
7	53.65	47	8.5	21.0	5.2	0.00	21.2	16.4	0.54	3	71.64	
8	53.67	47	8.6	21.0	5.2	0.00	21.2	16.6	0.54	3	72.37	
9	53.69	47	8.4	21.2	5.7	0.00	21.4	16.1	0.55	3	72.11	
10	53.71	47	8.9	21.2	5.2	0.00	21.3	16.7	0.49	3	71.46	
11 12	53.73 53.75	47 47	9.0 9.0	21.2 21.0	5.0 4.6	0.00 0.00	21.5 21.2	16.8 16.7	0.46 0.45	3 3	71.39 72.71	
13	53.77	47	8.5	21.0	4.2	0.00	21.2	16.0	0.43	3	72.38	
14	53.80	47	8.2	21.6	3.6	0.00	21.6	16.8	0.42	3	73.49	
15	53.82	47	8.0	21.5	2.7	0.00	21.6	16.6	0.40	3	73.30	
16	53.84	47	8.2	21.6	2.5	0.00	21.6	16.6	0.39	3	73.22	
17 18	53.86 53.88	47 47	8.4 8.9	21.3 21.0	2.2 2.0	0.00 0.00	21.3 21.1	16.0 16.8	0.38 0.37	3 3	72.54 72.52	
19	53.90	47	8.2	21.0	2.0	0.00	21.1	16.6	0.36	3	71.99	
20	53.92	47	9.0	21.2	2.0	0.00	21.5	16.7	0.36	3	72.82	
21	53.94	47	8.9	21.5	1.9	0.00	21.7	16.7	0.35	3	72.80	
22	53.96	47	8.9	21.3	2.2	0.00	21.6	16.5	0.34	3	71.30	
23 24	53.99 54.01	47 47	8.7 8.8	21.3 21.3	2.2 2.4	0.00 0.00	21.4 21.4	16.5 16.4	0.33 0.36	3 3	71.79 73.37	
25	54.03	47	8.9	21.3	3.0	0.00	21.4	16.8	0.32	3	71.17	
26	54.05	47	8.9	21.3	3.2	0.00	21.5	16.6	0.33	3	71.61	
27	54.07	47	8.8	21.4	3.1	0.00	21.4	17.5	0.35	2	73.06	
28 29	54.09 54.11	47 47	8.5 8.8	21.5 21.6	3.2 3.3	0.00 0.00	21.5 21.7	16.7 16.8	0.33 0.32	3 3	72.63 71.40	
30	54.13	47	8.7	21.6	3.1	0.00	21.7	16.6	0.32	3	72.10	
31	54.15	47	8.7	21.5	3.3	0.00	21.7	16.9	0.33	3	72.38	
32	54.18	47	8.9	21.7	3.6	0.00	21.8	17.1	0.33	3	73.15	
33	54.20	47	8.8	21.5	3.4	0.00	21.6	17.1	0.33	3	72.04	
34 35	54.22 54.24	47 47	8.9 9.5	21.5 21.2	3.3 3.2	0.00 0.00	21.6 21.5	16.8 16.8	0.33 0.30	3 3	72.75 71.13	
36	54.26	47	9.5	21.5	3.5	0.00	21.6	17.0	0.33	3	72.73	
37	54.28	47	9.7	21.3	3.4	0.00	21.5	16.8	0.31	3	71.44	
38	54.30	47	9.9	21.5	3.4	0.00	21.7	16.4	0.30	4	71.71	
39 40	54.32 54.35	47 47	9.9 10.2	21.4 21.2	4.0 3.6	0.00 0.00	21.4 21.3	17.0 16.6	0.32 0.31	3 4	72.68 71.51	
40 41	54.35 54.37	47 47	10.2 9.9	21.2 21.1	3.6 3.7	0.00	21.3 21.2	16.6	0.31	4	71.63	
42	54.39	47	10.3	21.2	3.8	0.00	21.2	16.5	0.29	4	70.49	
43	54.41	47	10.8	21.5	3.7	0.00	21.7	16.6	0.30	4	72.44	
44	54.43	47	11.1	21.2	3.7	0.00	21.2	16.5	0.30	4	72.04	
45	54.45	47	11.1	21.1	3.7	0.00	21.2	16.6	0.30	4	71.36	

Georgia SPT - SPT 2 Sample 5

Page 2 PDIPLOT2 2017.2.58.3 - Printed 18-April-2019

Rod of area 1.18 square inches on CME 75

OP: N	VT								Date	e: 12-Apr	il-2019
BL#	Depth	BLC	RMX	CSX	TSX	STK	CSI	CSB	DMX	SFR	ETR
	ft	bl/ft	kips	ksi	ksi	ft	ksi	ksi	in	kips	(%)
46	54.47	47	11.0	21.3	3.7	0.00	21.5	16.5	0.29	4	71.27
47	54.49	47	11.2	21.2	3.8	0.00	21.3	16.3	0.29	4	70.87
48	54.51	47	11.0	21.5	3.5	0.00	21.6	16.6	0.30	4	72.83
49	54.54	47	11.4	21.3	3.3	0.00	21.4	16.7	0.31	4	73.80
50	54.56	47	11.2	21.5	3.2	0.00	21.7	16.9	0.31	4	74.32
51	54.58	47	11.7	21.3	3.5	0.00	21.3	16.3	0.30	4	72.31
52	54.60	47	11.8	21.5	3.3	0.00	21.7	16.5	0.29	5	72.94
53	54.62	47	11.8	21.2	3.2	0.00	21.3	16.7	0.28	4	71.57
54	54.64	47	11.7	21.6	3.2	0.00	21.6	16.3	0.30	5	73.68
55	54.66	47	12.1	21.6	3.2	0.00	21.6	16.2	0.27	5	71.81
56	54.68	47	11.8	21.2	3.2	0.00	21.3	16.5	0.29	5	72.43
57	54.70	47	11.7	21.1	3.4	0.00	21.2	16.6	0.29	4	71.75
58	54.73	47	11.6	21.5	3.2	0.00	21.7	16.3	0.29	5	72.23
59	54.75	47	12.0	21.6	3.2	0.00	21.7	16.1	0.28	5	72.28
60	54.77	47	11.6	21.6	3.4	0.00	21.7	16.4	0.31	5	73.76
61	54.79	47	11.7	21.4	3.5	0.00	21.5	15.7	0.29	5	72.69
62	54.81	47	11.7	21.7	3.4	0.00	21.7	16.8	0.29	4	72.24
63	54.83	47	11.9	21.5	3.3	0.00	21.6	15.9	0.30	5	73.48
64	54.85	47	11.5	21.6	3.6	0.00	21.6	15.8	0.30	5	73.37
65	54.87	47	11.9	21.6	3.2	0.00	21.7	16.5	0.28	5	72.35
66	54.89	47	11.7	21.4	3.4	0.00	21.5	16.4	0.29	5	72.12
67	54.92	47	12.0	21.3	3.3	0.00	21.3	16.5	0.28	5	72.10
68	54.94	47	11.6	21.7	3.6	0.00	21.8	16.7	0.30	5	73.06
69	54.96	47	11.4	21.5	3.4	0.00	21.5	16.6	0.30	5	73.07
70	54.98	47	11.5	21.7	3.4	0.00	21.8	16.4	0.28	5	72.03
71	55.00	47	11.6	21.4	4.0	0.00	21.5	16.1	0.28	5	73.35
	A	verage	9.9	21.4	3.9	**	21.5	16.5	0.41	4	72.31
		d. Dev.	1.5	0.2	1.7	**	0.2	0.4	0.27	1	0.78
		iximum	12.1	21.7	10.0	**	21.8	17.7	1.55	5	74.32
	Mi	nimum	6.4	21.0	1.9	**	21.1	15.4	0.27	1	70.49
				Total nur	nhor of hl	ows analy	17 ·bazy				

Total number of blows analyzed: 71

#### **BL#** Sensors

1-71 F1: [357AWJ1] 212.0 (1.12); F4: [357AWJ2] 211.2 (1.12); A2: [55385] 915.0 (0.88); A3: [50148] 1065.0 (0.88)

#### **BL#** Comments

71 end of set 5. n=51

#### **Time Summary**

Drive 1 minute 41 seconds 2:42 PM - 2:43 PM BN 1 - 71

# Betts- CME 55 (SN 54005)



Betts Environmental 361 Airport Square Adel, Georgia 31620

April 18, 2019

Offices In: Daytona Beach, FL . Fort Myers, FL Fort Pierce, FL Gainesville, FL Jacksonville, FL · Leesburg, FL · Miami, FL · Norcross, GA · Ocala, FL Orlando, FL · Palm Coast, FL · Panama City, FL · Pensacola, FL Rockledge, FL · Sarasota, FL . St. Augustine, FL Tampa, FL · West Palm Beach, FL

Subject: Dynamic Testing Report SPT Hammer Energy Measurement- CME-55 (S/N 54005) 156 N Johnson Street Newborn, Georgia 30056 UES Project 0950.1900024.0000

UES has completed the high strain dynamic (i.e. PDA) testing for the Soil Test Boring drill rig designated CME-55 in use at the above referenced project. Dynamic monitoring was conducted during performance of a soil test boring in order to determine energy transferred by the Standard Penetration Test hammer to the drill rods during split spoon sampling. The dynamic testing was conducted using the Pile Driving AnalyzerTM (PDA) Model 8G, which records, digitizes, and processes the force and acceleration signals. The dynamic testing was carried out in accordance with ASTM D4945 *Standard Test Method for High Strain Dynamic Testing of Piles and* ASTM D4633 *Standard Test Method for Energy Measurement for Dynamic Penetrometers*.

# **PROJECT DESCRIPTION**

## Overview

The SPT hammer calibration testing was performed on site at the property located at 156 N Johnson Street in Newborn, Georgia. The SPT hammer calibration testing was performed at seven (7) depths during sampling of an SPT Test Boring on April 12, 2019. The SPT hammer calibration testing was performed the following sampling depths; 6.5 to 8.0 feet (Sample 1), 12.0 to 13.5 feet (Sample 2), 18.5 to 20.0 feet (Sample 3), 23.5 to 25.0 feet (Sample 4), 33.5 to 35.0 feet (Sample 5), 38.5 to 40.0 feet (Sample 6), and 43.5 to 45.0 feet (Sample 7).

# **SPT Testing Overview**

Numerous technical publications exist regarding the Standard Penetration Test (SPT). Of these publications, ASTM D1586 *Standard Test Method for Penetration Test and Split-Barrel Sampling of Soils* is considered to be the industry standard. This standard was last approved in January, 1999. In addition, U.S. Army Corp of Engineers Engineering Technical Letter (ETL) 1110-1-138 (dated March, 1988) is also a commonly used standard reference.

The Standard Penetration Test (SPT) consists of a drive weight assembly (i.e. hammer and anvil), split spoon sampler, and drill rods. The drive weight system consists of a 140 lb hammer raised by a number of mechanical means. The split spoon sampler is placed at the end of the drill rods in a borehole. The 140 lb hammer is raised 30 inches and then dropped to impact the drill rods. This procedure is repeated until the sampler has penetrated 18 inches into the underlying soil. The number of blows required to advance the split spoon sampler 12 inches is recorded as the "N" value for the test. Typically, the test is performed every 2  $\frac{1}{2}$  ft for the upper 10 ft of a boring and then at 5 ft intervals thereafter. The standard dimensions of the split spoon sampler are shown in Figure 1, while a typical SPT setup is presented in Figure 2.



Figure 1. Split Spoon Sampler (after Rogers, 2004, adapted from ASTM D1586).

There are three (3) types of SPT hammers currently used in drilling practice today: the donut hammer, the automatic hammer, and the safety hammer. In addition, there are three (3) main types of hammer lifting mechanisms: cathead-rope system, spooling wench, or chain driven systems. Drill rods vary from AW ( $1\frac{3}{4}$  in O.D.) to NW ( $2\frac{5}{8}$  in O.D.), with drill rod lengths varying between 2 ft to 10 ft increments. Methods for advancing boreholes for the SPT test include mud rotary drilling, hollow stem augers, and water drilling with steel casing.





Figure 2. Typical SPT Setup.

# **SPT Energy Measurements**

A number of factors can influence the SPT test and the subsequent N value. These include but are not limited to the following:

- Hammer
- Hammer Lifting System
- Operator Field Procedures
- Drill Rod Diameter and Length
- Borehole Drilling Method and Size
- Spilt Spoon Sampler

A graphical representation of various SPT system variables is provided in Figure 3.





Figure 3. SPT Testing System Variables (after Lamb, 1997).

In order to account for these system variables, standardized SPT corrections have been developed. The corrected blow count is referred to as the  $N_{60}$  value. The  $N_{60}$  value is derived from the assumed efficiency of the original SPT (Mohr) hammer (Rogers, 2004). The following equation defines  $N_{60}$  values:

$$N_{60} = C_{60}C_bC_sC_rN$$

Where:

 $N_{60} = SPT N$  Value corrected for field procedures and apparatus

 $C_{60}$  = Hammer Efficiency Correction

 $C_b$  = Borehole Diameter Correction

 $C_s =$  Sample Barrel Correction

 $C_r = \text{Rod Length Correction}$ 

N = Raw SPT value

In addition, the N value is influenced by the overburden pressure. Laio and Whitman (1986) proposed the following overburden correction for  $N_{60}$ , termed ( $N_1$ )₆₀:

$$(N_1)_{60} = N_{60} \frac{\sqrt{2000 \, psf}}{\sigma'_{v}}$$



Where:  $\sigma'_{v} =$  Effective vertical overburden stress

The hammer efficiency correction ( $C_{60}$ ) is based on the Energy Transfer Efficiency (ER_i) and the 60% of the theoretical transferred hammer energy of 350 ft-lbs (i.e. 140 lbs multiplied by a 30 inch drop). The following equations show the derivation of  $C_{60}$ :

$$ER_i = \frac{E_i}{E_{th}}$$

Where:

 $ER_i = Energy$  Transfer Efficiency  $E_i = Measured$  Transferred Energy

 $E_{th}$  = Theoretical Transferred Energy (i.e. 350 ft-lb)

and

$$C_{60} = \frac{ER_i}{60\%}$$

For liquefaction analysis using SPT N values, transferred energy measurements are required to determine  $(N_1)_{60}$ . The methods for determining the normalized penetration resistance for liquefaction potential are presented in ASTM D6066 *Standard Practice for Determining the Normalized Penetration Resistance of Sands for Evaluation of Liquefaction Potential*.

Transferred (i.e. delivered) energy measurements of SPT testing (i.e. the energy delivered by the hammer to the drill rods) are commonly taken in engineering practice through the use of several types of instruments. The most common of these is the Pile Driving Analyzer (PDA), developed and marketed by Pile Dynamics Inc. of Cleveland, Ohio. The PDA is a computer fitted with a data acquisition and a signal conditioning system and is typically used to conduct high strain dynamic load testing of driven piles, which is analogous to the SPT test. Strain gages and accelerometers which are connected to the PDA are attached to the pile or drill rods (for SPT testing). During pile driving or SPT testing, the strain and acceleration signals are recorded and processed for each hammer blow. The strain signal is converted to a force record and the acceleration signal is converted to a velocity record. The PDA saves selected hammer blows containing this information to disk and determines the compressive stresses, displacement, and



energy at the point of measurement (pile top). The maximum transferred energy (EMX) is derived from the dynamic measurements using the following equation:

$$EMX = \int_{b}^{a} F(t)V(t)dt$$

Where:

- a = Time Energy Transfer Begins
- b = Time Energy Transfer End

F = Force

V = Velocity

t = Time

Refer to Abou-matar and Goble (1997) for additional details of SPT energy measurements using the PDA. Literature regarding the PDA is provided in the Appendix.

## SPT Rig/Hammer System

The tested drill rig is designated CME-55 and is manufactured by Central Mine Equipment, Inc. The drill rig was parked on existing grade in a grassy area for this project. We understand that the drill rig was built on July 29, 1970 and is identified with Serial Number 54005. The CME-55 drill rig is fitted with an automatically operated hammer system. The drill rig and SPT hammer were operated by Mr. Chris Golden.

The method of drilling for the rig during testing was hollow stem auger (HSA), with Standard Penetration Testing being performed with AWJ drill rods. AWJ drill rod sections have nominal outside diameter of 1-5/8 inches and wall thickness of 3/16 inches. The instrumented sub-assembly (i.e. where gauges were attached) consisted of a two feet long section of AWJ rod that was threaded into the top drill rod at each testing interval.

## **Dynamic Load Test Instrumentation**

The dynamic pile testing instrumentation consisted of a 2-feet long AWJ instrumented drill rod which is fitted with two strain gauges by Pile Dynamic Inc., in addition two (2) accelerometer transducers are attached a distance of approximately 1 foot below the top (i.e. in the center) of a two feet long instrumented AWJ drill rod. One strain gauge and one accelerometer are on opposite faces of the sub-assembly to minimize the effects of uneven hammer impact and rod bending.

A Model 8G Pile Driving AnalyzerTM (PDA), manufactured by Pile Dynamics Inc., was used to collect the instrumentation data. The PDA is a computer fitted with a data acquisition and a



signal conditioning system. During driving, the strain and acceleration signals are recorded and processed for each hammer blow. The strain signal is converted to a force record and the acceleration signal is converted to a velocity record. The sampling frequency used during the SPT Energy Measurement Testing was 20,000 hertz (20 kHz). The PDA saves selected hammer blows containing this information to disk and determines the energy at the point of measurement.

## DYNAMIC TESTING RESULTS

## Hammer Performance

The transferred energy monitored during the sampling is summarized in Table 1. Note that the values are those recorded during the second and third 6-inch sampling interval at each depth. Hammer Efficiency is based on measured transferred energy divided by the energy generated with a 140 pound hammer dropping 30 inches (0.35 kip-ft).

SPT 1 Sample Depth	SPT Blow Count	Hammer Efficiency (%)							
(feet)	(Per 6 inch)	Min	Max	Average	Standard Deviation				
6.5 to 8.0	2-4-4	64.65	78.85	73.81	4.71				
12.0 to 13.5	4-4-4	50.97	71.61	65.31	4.97				
18.5 to 20.0	3-3-6	54.22	83.02	74.03	8.02				
23.5 to 25.0	3-3-6	54.95	88.18	81.35	8.64				
33.5 to 35.0	12-7-9	49.92	75.68	67.40	5.70				
38.5 to 40.0	3-4-8	74.83	87.65	83.22	2.96				
43.5 to 45.0	3-6-10	77.94	89.29	84.77	3.10				
OVERA	ALL ¹ :	61.07	82.04	75.70	5.44				

### Table 1. CME-55 Rig SPT Energy Measurement Summary

The following figure shows the SPT rig tested.



Figure 1: SPT drill rig.



UES Project No. 0950.1900024.0000 April 18, 2018 Page 9 of 9

#### **CONCLUSIONS AND RECOMMENDATIONS**

It is our opinion that the SPT hammer on the drill rig designated CME-55 is operating within a normal range for a semi-automatic SPT hammer.

UES appreciates the opportunity to provide this report. This report is for the sole use of this project and should not be relied upon otherwise. Should the project change significantly, we can review and modify our recommendations as needed. If you have questions concerning the contents herein, please contact us.

Sincerely,

#### UNIVERSAL ENGINEERING SCIENCES, INC.

Universal Florida Certificate of Authorization No. 549

Joshua C. Adams

Deep Foundation Engineer HSDPT Certified – Master Level



Attachments: PDA Data Output (PDIPLOT Graphs and Tables)



Printed: 18-April-2019 Test started: 12-April-2019 Georgia SPT - SPT 1 Sample 1 RMX (kips) ETR (%) -CSX (ksi) Maximum Case Method Capacity (JC) Compression Stress Maximum Energy Transfer Ratio - Rated 0 2 4 6 8 0.0 10.0 20.0 30.0 40.0 0.0 30.0 60.0 90.0 120.0 0 1 2 3 4 **BN - Blow Number** 5 6 -7 8 9 10 11 6 11 0.0 10.0 20.0 40.0 0.00 1.00 2.00 0 3 9 30.0 3.00 4.00 TSX (ksi) — Tension Stress Maximum - Full Record BLC (bl/ft) DMX (in) _____ **Blow Count** Maximum Displacement Search

Universal Engineering Sciences, Inc. - PDIPLOT2 Ver 2017.2.58.3 - Case Method & iCAP® Results

Page 1 PDIPLOT2 2017.2.58.3 - Printed 18-April-2019

Georg	gia SPT - S	PT 1 Sar	mple 1					Rod of	f area 1.1	8 square	inches
<u>OP: N</u>	IVT								Dat	e: 12-Ap	ril-2019
AR:	1.18 ir										192 k/ft ³
LE:	13.00 ft									EM: 30,0	
WS: 1	16,807.9 f/	S								JC: 0	.60
RMX:	Maximum	Case Me	ethod Cap	bacity (JC)	)	CSB	: Compre	ession Sti	ress at Bo	ttom of F	Pile
CSX:	Compress	sion Stres	ss Maximi	um		DMX	(: Maximu	ım Displa	cement		
TSX:	SX: Tension Stress Maximum - Full Record Sear						: Skin Fri	iction (Cr	ude Damp	oing Corr	ection)
STK:	TK: Hammer Stroke						: Energy	Transfer	Ratio - Ra	ated	
CSI:	Compress	sion Stres	ss Maximu	um - Indiv	idual Sens	sor					
BL#	Depth	BLC	RMX	CSX	TSX	STK	CSI	CSB	DMX	SFR	ETR
	ft	bl/ft	kips	ksi	ksi	ft	ksi	ksi	in	kips	(%)
1	6.65	7	3.0	16.7	8.1	0.00	17.1	2.7	2.29	3	64.65
2	6.80	7	3.3	16.3	7.8	0.00	16.5	2.8	2.02	3	68.71
3	6.95	7	3.5	16.6	7.8	0.00	16.8	3.5	1.80	3	76.83
4	7.10	7	3.2	16.4	7.3	0.00	16.8	3.6	1.80	2	75.57
5	7.25	7	3.4	16.3	7.3	0.00	16.6	4.7	1.80	2	77.88
6	7.40	7	3.4	16.5	7.1	0.00	16.7	3.9	1.80	2	78.85
7	7.55	7	3.2	16.3	7.3	0.00	16.6	4.8	1.80	2	76.68
8	7.70	7	3.4	16.1	7.5	0.00	16.3	3.7	1.80	2	69.96
9	7.85	7	3.7	16.6	7.1	0.00	16.9	4.1	1.80	2	78.57
10	8.00	7	3.5	16.6	6.9	0.00	17.0	4.4	1.80	2	70.40
	A	verage	3.3	16.4	7.4	**	16.7	3.8	1.87	2	73.81
	Ste	d. Dev.	0.2	0.2	0.4	**	0.2	0.7	0.15	0	4.71
	Ma	ximum	3.7	16.7	8.1	**	17.1	4.8	2.29	3	78.85
	Mi	nimum	3.0	16.1	6.9	**	16.3	2.7	1.80	2	64.65
				Total nur	nber of blo	ows analy	yzed: 10				

BL# Sensors

1-10 F1: [357AWJ1] 212.0 (1.10); F4: [357AWJ2] 211.2 (1.10); A2: [55385] 915.0 (0.90); A3: [50148] 1065.0 (0.90)

BL# Comments

10 END of Drive 1

Time Summary

Drive 9 seconds 8:44 AM - 8:44 AM BN 1 - 10



Universal Engineering Sciences, Inc. - PDIPLOT2 Ver 2017.2.58.3 - Case Method & iCAP® Results

Page 1 PDIPLOT2 2017.2.58.3 - Printed 18-April-2019

Georg	gia SPT - S	PT 1 Sar	mple 2					Rod of	f area 1.1	8 square	inches
<u>OP: N</u>	IVT									e: 12-Ap	
AR:	1.18 ir									SP: 0.4	
LE:	18.00 ft									EM: 30,0	)00 ksi
<u>WS:</u> 2	16,807.9 f/	s								JC: 0	.60
RMX:	Maximum	Case Me	ethod Cap	acity (JC	)	CSB	: Compre	ession Sti	ress at Bo	ttom of F	Pile
CSX:	Compress	sion Stres	ss Maximu	um		DMX	: Maximu	ım Displa	cement		
	SX: Tension Stress Maximum - Full Record Searc						: Skin Fr	iction (Cr	ude Damp	oing Corr	ection)
STK:	Hammer	Stroke				ETR	: Energy	Transfer	Ratio - Ra	ated	
CSI:	Compress	sion Stres	ss Maximu	um - Indiv	idual Sens	or					
BL#	Depth	BLC	RMX	CSX	TSX	STK	CSI	CSB	DMX	SFR	ETR
	ft	bl/ft	kips	ksi	ksi	ft	ksi	ksi	in	kips	(%)
1	12.00	7	2.3	18.0	12.9	0.00	18.2	9.3	1.83	1	50.97
2	12.14	7	2.0	21.6	15.5	0.00	21.8	9.6	1.61	2	67.57
3	12.27	7	2.7	21.2	14.6	0.00	21.4	10.7	1.24	2	63.34
4	12.41	7	3.7	21.5	13.8	0.00	21.8	11.3	0.98	3	63.19
5	12.55	7	3.6	21.8	14.3	0.00	21.9	9.3	1.03	3	68.21
6	12.68	7	4.2	22.3	14.0	0.00	22.4	11.3	0.98	3	67.40
7	12.82	7	3.7	20.8	12.3	0.00	21.0	10.9	0.96	3	67.64
8	12.95	7	4.4	22.3	13.3	0.00	22.4	10.7	0.84	3	71.61
9	13.09	7	5.0	21.7	11.7	0.00	21.8	11.9	0.69	4	65.98
10	13.23	7	4.8	20.3	11.3	0.00	20.4	11.4	0.65	3	63.42
11	13.36	7	4.8	20.2	10.8	0.00	20.4	11.5	0.65	3	65.11
12	13.50	7	4.1	21.9	11.5	0.00	22.0	10.9	0.62	3	69.25
	A	verage	3.8	21.1	13.0	**	21.3	10.8	1.01	3	65.31
		d. Dev.	0.9	1.2	1.4	**	1.1	0.8	0.37	1	4.97
		iximum	5.0	22.3	15.5	**	22.4	11.9	1.83	4	71.61
	Mi	nimum	2.0	18.0	10.8	**	18.2	9.3	0.62	1	50.97
				Total pur	mbor of blo	we analy	170d. 12				

Total number of blows analyzed: 12

#### BL# Sensors

1-12 F1: [357AWJ1] 212.0 (1.12); F4: [357AWJ2] 211.2 (1.12); A2: [55385] 915.0 (0.88); A3: [50148] 1065.0 (0.88)

**BL#** Comments

12 END of Set 2

**Time Summary** 

Drive 10 seconds 8:59 AM - 8:59 AM BN 1 - 12

Universal Engineering Sciences, Inc. - PDIPLOT2 Ver 2017.2.58.3 - Case Method & iCAP® Results Printed: 18-April-2019 Test started: 12-April-2019



Page 1 PDIPLOT2 2017.2.58.3 - Printed 18-April-2019

Georg	gia SPT - S	SPT 1 Sar	nple 3					Rod of	f area 1.1	8 square	inches
OP: N	ĪVT		•						Dat	e: 12-Ap	ril-2019
AR:	1.18 ir	ן ²								SP: 0.4	192 k/ft ³
LE:	23.50 ft									EM: 30,0	)00 ksi
WS: 1	16,807.9 f/	s								JC: 0	.60
RMX:	Maximum	Case Me	ethod Cap	acity (JC	)	CSB	: Compre	ession Sti	ress at Bo	ttom of F	Pile
CSX:	Compress	sion Stres	ss Maximi	um		DMX	: Maximu	um Displa	cement		
TSX:	Tension S		ximum - F	Full Recor	d Search	SFR	: Skin Fr	iction (Cr	ude Damp	oing Corr	ection)
STK:							: Energy	Transfer	Ratio - Ra	ated	
CSI:	Compress	sion Stres	ss Maximu	um - Indiv	idual Sens	or					
BL#	Depth	BLC	RMX	CSX	TSX	STK	CSI	CSB	DMX	SFR	ETR
	ft	bl/ft	kips	ksi	ksi	ft	ksi	ksi	in	kips	(%)
1	18.63	8	2.7	21.3	14.5	0.00	21.5	6.2	1.79	2	71.09
2	18.75	8	2.3	21.3	13.8	0.00	21.5	8.4	1.62	2	71.56
3	18.88	8	2.3	21.2	12.9	0.00	21.5	6.7	1.50	2	70.22
4	19.00	8	2.7	21.3	13.2	0.00	21.5	8.1	1.50	2	75.72
5	19.13	8	2.7	19.6	11.5	0.00	19.9	8.0	1.50	2	64.52
6	19.25	8	2.8	21.3	11.8	0.00	21.5	9.5	1.50	2	83.02
7	19.38	8	3.4	21.4	11.2	0.00	21.6	9.2	1.50	3	79.49
8	19.50	8	3.3	21.2	10.8	0.00	21.5	8.7	1.50	3	79.66
9	19.63	8	3.6	21.6	11.2	0.00	21.8	10.5	1.50	3	76.00
10	19.75	8	3.6	17.3	9.2	0.00	17.5	8.5	1.50	3	54.22
11	19.88	8	3.9	21.3	10.5	0.00	21.5	10.7	1.50	2	81.74
12	20.00	8	4.5	21.3	10.0	0.00	21.4	10.0	1.50	3	81.18
		verage	3.1	20.8	11.7	**	21.0	8.7	1.53	2	74.03
		d. Dev.	0.7	1.2	1.5	**	1.2	1.3	0.08	0	8.02
		aximum	4.5	21.6	14.5	**	21.8	10.7	1.79	3	83.02
	M	inimum	2.3	17.3	9.2 phor of blo	**	17.5	6.2	1.50	2	54.22

Total number of blows analyzed: 12

#### BL# Sensors

1-12 F1: [357AWJ1] 212.0 (1.11); F4: [357AWJ2] 211.2 (1.11); A2: [55385] 915.0 (0.89); A3: [50148] 1065.0 (0.89)

**BL#** Comments

12 end of set 3

**Time Summary** 

Drive 11 seconds 9:08 AM - 9:09 AM BN 1 - 12



Universal Engineering Sciences, Inc. - PDIPLOT2 Ver 2017.2.58.3 - Case Method & iCAP® Results

Page 1 PDIPLOT2 2017.2.58.3 - Printed 18-April-2019

Geor	gia SPT - S	SPT 1 Sar	mple 4					Rod of	f area 1.1		
<u>OP: N</u>	IVT									e: 12-Ap	
AR:	1.18 ir	²								SP: 0.4	92 k/ft ³
LE:	29.00 ft									EM: 30,0	)00 ksi
WS: 1	16,807.9 f/	s								JC: 0	.60
RMX:	Maximum	Case Me	ethod Cap	acity (JC)	)	CSB	: Compre	ession Sti	ress at Bo	ttom of F	Pile
CSX:	Compress	sion Stres	ss Maximu	um		DMX	: Maximu	ım Displa	cement		
TSX:	Tension S	Stress Ma	ximum - F	Full Recor	d Search	SFR	: Skin Fr	iction (Cr	ude Damp	oing Corr	ection)
STK:	Hammer	Stroke				ETR	: Energy	Transfer	Ratio - Ra	ated	
CSI:	Compress	sion Stres	ss Maximu	um - Indiv	idual Sens	sor					
BL#	Depth	BLC	RMX	CSX	TSX	STK	CSI	CSB	DMX	SFR	ETR
	ft	bl/ft	kips	ksi	ksi	ft	ksi	ksi	in	kips	(%)
1	23.63	8	1.7	18.4	10.1	0.00	18.5	11.2	1.57	0	54.95
2	23.75	8	2.6	21.7	12.1	0.00	21.8	10.8	1.73	1	76.30
3	23.88	8	2.0	22.3	11.6	0.00	22.4	9.8	1.75	1	84.95
4	24.00	8	2.4	22.6	10.7	0.00	23.3	8.9	1.50	2	82.61
5	24.13	8	2.5	22.5	10.9	0.00	22.8	8.9	1.50	2	85.97
6	24.25	8	2.5	22.5	10.9	0.00	22.9	10.2	1.50	2	85.49
7	24.38	8	2.7	22.5	11.0	0.00	23.0	10.5	1.50	2	84.11
8	24.50	8	2.9	22.4	11.1	0.00	23.1	9.8	1.50	2	86.16
9	24.63	8	3.5	22.3	11.0	0.00	23.0	9.3	1.50	2	86.22
10	24.75	8	3.5	22.2	10.9	0.00	22.7	11.3	1.50	2	83.75
11	24.88	8	3.4	22.1	10.7	0.00	22.8	10.0	1.50	2	88.18
12	25.00	8	4.0	21.8	10.7	0.00	22.2	10.9	1.50	2	77.55
	А	verage	2.8	21.9	11.0	**	22.4	10.1	1.55	2	81.35
		d. Dev.	0.6	1.1	0.5	**	1.2	0.8	0.09	1	8.64
		aximum	4.0	22.6	12.1	**	23.3	11.3	1.75	2	88.18
	M	inimum	1.7	18.4	10.1	**	18.5	8.9	1.50	0	54.95
				Total pur	mbor of blo	we analy	170d. 12				

Total number of blows analyzed: 12

#### BL# Sensors

1-12 F1: [357AWJ1] 212.0 (1.15); F4: [357AWJ2] 211.2 (1.15); A2: [55385] 915.0 (0.85); A3: [50148] 1065.0 (0.85)

**BL#** Comments

11 end of set 4. N=9

**Time Summary** 

Drive 11 seconds 9:20 AM - 9:20 AM BN 1 - 12

Universal Engineering Sciences, Inc. - PDIPLOT2 Ver 2017.2.58.3 - Case Method & iCAP® Results Printed: 18-April-2019 Test started: 12



P® Results Test started: 12-April-2019

Universal Engineering Sciences, Inc.
Case Method & iCAP® Results

Page 1 PDIPLOT2 2017.2.58.3 - Printed 18-April-2019

	gia_SPT - S	SPT 1 Sar	mple 5					Rod of	area 1.18		
<u>OP: N</u>										e: 12-Apr	
AR:	1.18 ir										92 k/ft ³
LE:	39.50 ft									EM: 30,0	
	16,807.9 f/			a altr ( 10)	<u>\</u>	000.	<u> </u>				.60
	Maximum				)				ess at Bo		ne
	Compress Tension S				d Soarch			um Displa	ude Damp		oction)
	Hammer		xiinuni - i		u Search				Ratio - Ra		ection
CSI:			s Maximi	ım - Indiv	idual Sens		Lifergy	Tansiei	110 - 110	aleu	
BL#	Depth	BLC	RMX	CSX	TSX	STK	CSI	CSB	DMX	SFR	ETR
$DL\pi$	ft	bl/ft	kips	ksi	ksi	ft	ksi	ksi	in	kips	(%)
1	33.00	0	6.3	18.2	8.7	0.00	18.4	9.1	0.42	3	49.92
2	33.00	Ő	6.6	20.1	10.8	0.00	20.1	9.4	0.48	4	62.35
3	33.00	Ő	6.9	20.8	12.0	0.00	20.9	10.6	0.58	4	66.31
4	33.00	Õ	6.5	21.3	12.6	0.00	21.5	10.9	0.65	4	69.33
5	33.00	õ	6.5	21.3	12.1	0.00	21.5	11.3	0.66	3	69.21
6	33.00	0	6.2	19.0	10.5	0.00	19.2	9.4	0.59	3	59.24
7	33.00	0	6.3	20.8	12.1	0.00	21.2	11.5	0.67	3	69.19
8	33.00	0	6.1	19.9	11.5	0.00	20.0	9.9	0.65	4	64.62
9	33.00	0	5.9	20.4	11.6	0.00	20.8	11.1	0.70	3	69.09
10	33.00	0	5.3	19.3	10.6	0.00	19.6	10.8	0.74	2	66.54
11	33.00	0	5.4	18.8	10.0	0.00	19.1	10.5	0.64	3	59.25
12	33.00	0	5.2	19.2	10.3	0.00	19.5	12.6	0.75	2	64.12
13	33.00	0	4.9	18.6	9.7	0.00	18.9	10.2	0.72	3	62.54
14	33.00	0	4.9	19.9	10.8	0.00	20.3	10.9	0.88	3	71.79
15	33.00	0	5.2	20.1	10.6	0.00	20.6	12.7	0.69	2	67.56
16	33.00	0	4.9	19.7	9.9	0.00	20.1	11.0	0.75	3	70.99
17	33.00	0	5.0	19.8	9.6	0.00	20.3	12.4	0.70	2	68.50
18	33.00	0	5.1	18.7	8.5	0.00	19.1	10.8	0.57	3	59.93
19	33.00	0	5.2	20.5	9.8	0.00	20.9	13.1	0.71	2	75.68
20	33.00	0	5.1	19.8	8.7	0.00	20.3	13.3	0.63	2	69.69
21	33.00	0	5.3	19.2	8.3	0.00	19.7	13.0	0.57	2	66.31
22	33.00	0	5.2	19.6	8.5	0.00	20.1	12.4	0.55	2	65.86
23	33.00	0	5.5	20.3	8.7	0.00	20.8	14.1	0.59	2	72.19
24	33.00	0	5.7	20.4	8.3	0.00	20.9	13.9	0.53	2	71.00
25	33.00	0	5.9	20.4	8.5	0.00	21.0	13.4	0.56	2	73.75
26	33.00	0	5.8	21.0	8.7	0.00	21.5	14.7	0.59	2	75.52
27	33.00	0	5.8	20.6	8.2	0.00	21.0	14.4	0.49	2	71.44
28	34.50	19	6.1	20.9	8.5	0.00	21.4	14.1	0.51	2	75.32
		verage	5.7	20.0	9.9	**	20.3	11.9	0.63	3	67.40
		d. Dev.	0.6	0.8	1.4	**	0.9	1.6	0.10	1	5.70
		iximum inimum	6.9 4.9	21.3 18.2	12.6 8.2	**	21.5 18.4	14.7 9.1	0.88 0.42	4 2	75.68 49.92
	IVI		4.9		0.2 nher of blo			9.1	0.42	2	49.92

Total number of blows analyzed: 28

#### BL# Sensors

1-28 F1: [357AWJ1] 212.0 (1.12); F2: [357AWJ2] 211.2 (1.12); A1: [55385] 915.0 (0.88); A2: [50148] 1065.0 (0.88)

#### **BL#** Comments

28 ;End of Set 5. N=15

Page 2 PDIPLOT2 2017.2.58.3 - Printed 18-April-2019

Georgia SPT - SPT 1 Sample 5 OP: NVT

Time Summary

Drive 26 seconds 9:34 AM - 9:34 AM BN 1 - 28

Rod of area 1.18 square inches Date: 12-April-2019

Universal Engineering Sciences, Inc. - PDIPLOT2 Ver 2017.2.58.3 - Case Method & iCAP® Results Printed: 18-April-2019



Test started: 12-April-2019

Page 1 PDIPLOT2 2017.2.58.3 - Printed 18-April-2019

	gia SPT - S	PT 1 Sar	nple 6					Rod of	farea 1.1		
<u>OP: N</u>										e: 12-Ap	
AR:	1.18 in	2									192 k/ft ³
LE:	44.00 ft									EM: 30,0	
	16,807.9 f/s										.60
	Maximum				)				ress at Bo	ttom of F	Pile
	Compress						(: Maximu				
	Tension S		ximum - F	Full Recor	d Search				ude Damp		ection)
	Hammer S						: Energy	Transfer	Ratio - Ra	ated	
CSI:	Compress										
BL#	Depth	BLC	RMX	CSX	TSX	STK	CSI	CSB	DMX	SFR	ETR
	ft	bl/ft	kips	ksi	ksi	ft	ksi	ksi	in	kips	(%)
1	38.60	10	7.5	22.4	13.0	0.00	23.0	15.9	1.38	3	74.83
2	38.70	10	8.2	21.9	11.6	0.00	22.2	15.4	1.30	4	80.08
3	38.80	10	6.6	21.9	11.5	0.00	22.3	16.1	1.40	2	82.09
4	38.90	10	7.6	21.7	11.0	0.00	22.2	15.9	1.20	3	81.82
5	39.00	10	6.5	21.9	11.0	0.00	22.4	15.6	1.20	3	83.98
6	39.10	10	7.4	21.7	10.4	0.00	22.1	15.5	1.20	3	81.72
7	39.20	10	7.0	22.2	10.6	0.00	23.0	15.6	1.20	3	85.20
8	39.30	10	6.5	21.9	9.4	0.00	22.6	15.2	1.20	3	85.23
9	39.40	10	6.9	21.7	9.4	0.00	22.2	15.1	1.20	3	84.18
10	39.50	10	6.4	21.7	9.1	0.00	22.3	15.3	1.20	3	86.11
11	39.60	10	6.7	21.7	9.1	0.00	22.2	15.0	1.20	3	85.05
12	39.70	10	6.8	21.3	7.8	0.00	21.6	15.2	1.20	3	85.13
13	39.80	10	8.2	21.8	8.4	0.00	22.3	16.0	1.20	3	87.65
14	39.90	10	7.8	21.4	7.6	0.00	21.7	15.6	1.20	3	82.98
15	40.00	10	7.4	21.4	7.9	0.00	21.9	16.1	1.20	3	82.20
	A	verage	7.2	21.8	9.9	**	22.3	15.6	1.23	3	83.22
	Sto	d. Dev.	0.6	0.3	1.5	**	0.4	0.4	0.07	0	2.96
		ximum	8.2	22.4	13.0	**	23.0	16.1	1.40	4	87.65
	Mi	nimum	6.4	21.3	7.6	**	21.6	15.0	1.20	2	74.83
				Total nur	nher of hlc	ws analy	17ed: 15				

Total number of blows analyzed: 15

BL# Sensors

1-15 F1: [357AWJ1] 212.0 (1.12); F4: [357AWJ2] 211.2 (1.12); A2: [55385] 915.0 (0.88); A3: [50148] 1065.0 (0.88)

**BL#** Comments

14 End of Set 6. N=12

Time Summary

Drive 14 seconds 9:44 AM - 9:44 AM BN 1 - 15



Universal Engineering Sciences, Inc. - PDIPLOT2 Ver 2017.2.58.3 - Case Method & iCAP® Results

Universal Engineering Sciences, Inc.
Case Method & iCAP® Results

Page 1 PDIPLOT2 2017.2.58.3 - Printed 18-April-2019

	gia SPT - S	SPT 1 Sar	mple 7					Rod of	farea 1.1		
<u>OP: N</u>										e: 12-Apr	
AR:	1.18 ir										92 k/ft ³
LE:	50.00 ft									EM: 30,0	
	16,807.9 f/									JC: 0.	.60
RMX:	Maximum	Case Me	ethod Cap	acity (JC	)	CSB	: Compre	ession Sti	ress at Bo	ttom of P	lie
CSX:	Compress	sion Stres	ss Maximu	ım		DMX	(: Maximu	ım Displa	cement		
TSX:	SX: Tension Stress Maximum - Full Record Sear						: Skin Fr	iction (Cr	ude Damp	oing Corr	ection)
STK:	STK: Hammer Stroke								Ratio - Ra		
CSI:	Compress	sion Stres	ss Maximu	ım - Indiv	idual Sens	sor	•••				
BL#	Depth	BLC	RMX	CSX	TSX	STK	CSI	CSB	DMX	SFR	ETR
	· ft	bl/ft	kips	ksi	ksi	ft	ksi	ksi	in	kips	(%)
1	43.58	13	5.1	21.7	12.6	0.00	22.2	13.4	1.51	· 3	78.47
2	43.66	13	5.6	21.6	12.4	0.00	21.8	13.3	1.12	3	83.35
3	43.74	13	6.1	21.6	10.0	0.00	22.0	13.8	0.95	3	86.28
4	43.82	13	6.3	21.7	9.8	0.00	22.1	13.7	0.95	4	88.08
5	43.89	13	5.9	21.8	9.4	0.00	22.1	13.6	0.95	3	89.29
6	43.97	13	6.0	21.9	9.0	0.00	22.2	13.7	0.95	4	88.04
7	44.05	13	6.5	21.8	8.1	0.00	22.3	14.6	0.95	3	87.18
8	44.13	13	6.5	21.9	7.3	0.00	22.2	14.2	0.95	4	85.25
9	44.21	13	6.6	21.9	6.7	0.00	22.2	14.6	0.95	3	84.63
10	44.29	13	6.2	22.2	6.3	0.00	22.5	14.0	0.95	3	87.49
11	44.37	13	6.2	22.0	5.9	0.00	22.1	13.6	0.95	4	87.18
12	44.45	13	5.9	22.2	6.0	0.00	22.5	13.7	0.95	3	85.73
13	44.53	13	6.0	22.2	5.6	0.00	22.6	14.4	0.95	3	85.77
14	44.61	13	6.5	22.4	5.4	0.00	22.9	14.4	0.95	3	85.46
15	44.68	13	6.1	22.0	5.0	0.00	22.3	14.0	0.95	3	82.78
16	44.76	13	7.0	22.1	4.7	0.00	22.5	14.4	0.95	4	80.06
17	44.84	13	7.1	22.1	4.6	0.00	22.5	14.8	0.95	3	83.79
18	44.92	13	7.1	21.9	4.6	0.00	22.1	15.5	0.95	3	83.88
19	45.00	13	6.9	21.5	4.1	0.00	22.0	14.9	0.95	3	77.94
	A	verage	6.3	21.9	7.2	**	22.3	14.1	0.99	3	84.77
		d. Dev.	0.5	0.2	2.6	**	0.3	0.6	0.13	0	3.10
		ximum	7.1	22.4	12.6	**	22.9	15.5	1.51	4	89.29
		inimum	5.1	21.5	4.1	**	21.8	13.3	0.95	3	77.94
				Total nur	nher of hlo	we analy					

Total number of blows analyzed: 19

BL# Sensors

1-19 F1: [357AWJ1] 212.0 (1.10); F4: [357AWJ2] 211.2 (1.10); A2: [55385] 915.0 (0.90); A3: [50148] 1065.0 (0.90)

**BL#** Comments

19 End of Set 7. N=16

**Time Summary** 

Drive 18 seconds 9:53 AM - 9:54 AM BN 1 - 19

# Tri-State- CME 45 (SN 31692402)



Report of SPT Energy Measurements Tri-State CME 45 Barge Rig Roswell, Georgia S&ME Project No. 1280-18-101

#### PREPARED FOR

NOVA Engineering and Environmental, LLC 3900 Kennesaw 75 Parkway, Suite 100 Kennesaw, Georgia 30144

#### PREPARED BY:

S&ME, Inc. 4350 River Green Parkway, Suite 200 Duluth, Georgia 30096

December 19, 2019



December 19, 2019

NOVA Engineering and Environmental, LLC 3900 Kennesaw 75 Parkway, Suite 100 Kennesaw, Georgia 30144

Attention: Mr. Eric Tay, P.E.

Reference: Report of SPT Energy Measurements Tri-State CME 45 Barge Rig Roswell, Georgia S&ME Project No. 1280-18-101

Dear Mr. Tay:

S&ME, Inc. (S&ME) completed the Standard Penetration Test (SPT) energy measurements on the automatic hammer mounted on Tri-State Drilling's CME 45 barge-mounted drill rig. This service was performed by Mr. Adam Jennings of S&ME on December 17, 2019, following the field exploration on the State Route 400 Major Mobility Improvement Project (MMIP) in Atlanta, Georgia. SPT energy testing was performed in general accordance with ASTM D4633 and pursuant to S&ME Proposal No. 12-1800360 dated August 27, 2018. The testing procedures, equipment used during testing, and detailed results are presented in this report.

# 1.0 Dynamic Testing Methodology

Testing was performed using a model PAX (Serial No. 3733L) Pile Driving Analyzer[™] (PDA) manufactured by Pile Dynamics, Inc. The PDA was used to record and interpret data from two piezoresistive accelerometers (Serial Nos. K10181 and K10182) bolted to an approximately 2-foot long AWJ drill rod (SN203) internally instrumented with two strain transducers. The instrumented AWJ drill rod has a cross-sectional area of 1.19 square inches, an outside diameter of approximately 1.75 inches, and an inside diameter of approximately 1.25 inches at the gauge location. The accelerometers and strain gauges, which are mounted on opposing axes near the middle of the instrumented rod, monitor acceleration and strain for each hammer blow. The analyzer converts the data to velocities and forces and computes the maximum transferred hammer energies with the "EFV" method described in ASTM D4633. Preliminary results are recorded and displayed in real time for each blow. Calibration sheets for the accelerometers and the instrumented rod are included in the Appendix.



# 2.0 Testing and Observations

On December 17, 2019, we perform high-strain dynamic testing during SPT sampling on the CME 45 bargemounted drill rig operated by Mr. Sawyer Blevins with Tri-State Drilling. The measurements were taken during drilling of a test hole in Tri-State Drilling's yard in Roswell, Georgia. SPT energy measurements were recorded during three intervals at depths of approximately 28½, 32, and 33½ ft below the top of the barge which was sitting on the ground. The information presented in the tables below summarizes the equipment tested and tooling used during the SPT energy measurements.

Manufacturer	CME
Model	45
Serial Number	31692402
Operator	S. Blevins
Carrier	Barge
Hammer Type	CME Autohammer

# Table 2-1: Drill Rig Information

Instrumented Rod Type	AWJ (SN 203)
Average OD (inches)	1.75
Average ID (inches)	1.25
Cross-Sectional Area (in ² )	1.19
Total Instrumented Rod Length (feet)	2.00
Length Below Gages (feet)	0.8
Split-Spoon Length (feet)	2.65

# Table 2-2: Instrumented Rod Information

# 3.0 Dynamic Testing Results

The total rod length from the instrumentation to the tip of the split-spoon sampler was determined by adding 3.4 ft to the required drill rod length at each sample depth. Based on the test data, the automatic hammer on the CME 45 barge-mounted drill rig operated at a rate of about 55 to 56 blows per minute (bpm) during dynamic testing. The measured transferred hammer energy (EFV) of all the individual blows ranged from 278 to 348 ft-lbs, which corresponds to Energy Transfer Ratio (ETR) values of 79.3 to 99.3%, respectively. The SPT Energy Measurement Data Summary tables in the Appendix present the test data from every hammer blow at each sampling interval, along with representative force and velocity traces for each test interval. The reported blow counts, obtained by the drill rig personnel, and a summary of the test data and average computed hammer energy and transfer ratio values are provided in Table 3-1. Plots and tables of the following are also included in the Appendix and present the test data with depth for each test interval:



S&ME Project No. 1280-18-101

• Penetration vs. BLC

Penetration vs. FMX

Penetration vs. EFV

Penetration vs. CSX

•

Penetration vs. VMX

Penetration vs. ETR

- Average ETR vs. Rod Length
- ETR vs. Rod Length
- Data Sample Drill Rod Instrumentation Blows per 6" Soil Sample Avg. Avg. Avg. Set Depth Length to Sampler Tip Increment / Description BPM EFV ETR (%) ID Length (ft) (ft) N-value (Coastal Plain) (ft-lbs) (ft) 281/2 - 30 33.4 14-5-5 / 10 55.7 1 30 Sandy Silt 321 91.8 2 32 - 331/2 32 35.4 5-16-23 / 39 55.3 95.2 Sandy Silt 333 3 331/2 - 35 35 38.4 50 blows in 3 in. Sandy Silt/PWR 54.1 329 94 55.0 328 93.7 **Overall Average**

# Table 3-1: Summary of Dynamic Testing Results

The average hammer rate, transferred energy, and transfer ratio were calculated for each depth interval. Per ASTM D4633, only the blows from the final foot of each sample interval (i.e. the blows that determine the N-value) were included when computing the average values shown in Table 3-1. The overall average transferred hammer energy for the automatic hammer on the CME 45 barge-mounted drill rig (for all the depth intervals tested) was 328 foot-pounds, with an average ETR of 93.7%.

# 4.0 Limitations of Report

This report has been prepared in accordance with generally accepted geotechnical engineering practice for specific application to this project. The conclusions contained in this report were based on the applicable standards of our profession in this geographic area at the time this report was prepared. No other warranty, express or implied, is made.



Report of SPT Energy Measurements Tri-State CME 45 Barge Rig Roswell, Georgia S&ME Project No. 1280-18-101

# 5.0 Closing

We appreciate the opportunity to be of service on this project. Please let us know if you have any questions concerning this report.

Sincerely,

S&ME, Inc.

A.It

R. Heath Forbes, P.E. (SC) Project Engineer hforbes@smeinc.com

Jeffrey A. Doubrava, P.E. Vice President / Senior Engineer jdoubrava@smeinc.com

Appendices:

- Appendix I Tri-State CME 45 Barge Rig SPT Energy Measurements Summary Plots and Tables
- Appendix II Instrumented Rod and Accelerometer Calibration Sheets

Appendices







1 - Blow count = 50 blows over 3 in.

Page 1 of 3 PDA-S Ver. 2019.30.82 - Printed: 12/19/2019

 Tri-State CME 45 Barge Rig
 28.5 to 30.0 ft

 JAJ
 Test date: 12/17/2019

 Test Hole

 AR: 1.19
 in^2

 LE: 33.05
 ft

 WS: 16807.9 ft/s
 EM: 30000 ksi



F1 : [203 AWJ-1] 214.31 PDICAL (1) FF6 F2 : [203 AWJ-2] 214.45 PDICAL (1) FF6 A1 (PR): [K10181] 356 mv/6.4v/5000g (1) VF6 A2 (PR): [K10182] 368 mv/6.4v/5000g (1) VF6

BPM: Blows/N FMX: Maximu VMX: Maximu	im Force						CSX:	Final Displa Compression Maximum E	on Stress M	aximum
DMX: Maximu	•	nent					ETR:	Energy Tra	nsfer Ratio -	Rated
BL#	LP	BC	BPM	FMX	VMX	DMX	DFN	CSX	EFV	ETR
	ft	/6"	bpm	kips	ft/s	in	in	ksi	ft-lb	%
1	28.54	14	55.9	26	20.4	0.47	0.43	22.2	329	93.9
2	28.57	14	55.9	26	19.9	0.48	0.43	22.1	328	93.6
3	28.61	14	55.6	26	20.5	0.48	0.43	22.2	326	93.2
4	28.64	14	56.3	26	20.3	0.49	0.43	22.1	324	92.6
5	28.68	14	55.6	26	20.1	0.50	0.43	22.1	327	93.5
6	28.71	14	55.5	26	20.2	0.52	0.43	22.2	322	92.0
7	28.75	14	56.0	27	20.5	0.53	0.43	22.4	330	94.2
8	28.79	14	55.9	26	20.3	0.54	0.43	22.1	327	93.3
9	28.82	14	55.8	26	20.3	0.54	0.43	22.1	326	93.2
10	28.86	14	55.7	26	20.3	0.56	0.43	22.1	331	94.5
11	28.89	14	55.7	26	20.1	0.55	0.43	22.2	320	91.4
12	28.93	14	55.8	27	21.2	0.61	0.43	22.7	330	94.2
13	28.96	14	56.0	26	20.5	0.64	0.43	22.3	318	90.9
14	29.00	14	55.8	26	20.5	0.71	0.43	22.2	323	92.2
15	29.10	5	55.8	26	20.0	1.20	1.20	21.5	326	93.1
16	29.20	5	55.8	26	20.0	1.20	1.20	22.0	319	91.3
17	29.30	5	55.6	26	20.7	1.22	1.20	22.0	329	94.0
18	29.40	5	55.2	26	20.5	1.31	1.20	21.8	322	92.1
19	29.50	5	56.1	27	20.7	1.34	1.20	22.5	319	91.1
20	29.60	5	55.9	27	21.2	1.42	1.20	22.8	322	91.9
21	29.70	5	55.8	26	20.6	1.48	1.20	22.2	320	91.3
22	29.80	5	55.8	26	20.4	1.50	1.20	21.9	315	89.9
23	29.90	5	56.0	26	20.7	1.50	1.20	22.0	319	91.2
24	30.00	5	55.2	27	21.1	1.52	1.20	22.4	324	92.6

Page 2 of 3 PDA-S Ver. 2019.30.82 - Printed: 12/19/2019

Average	55.7	26	20.6	1.37	1.20	22.1	321	91.8
Std Dev	0.3	0	0.4	0.12	0.00	0.4	4	1.1
Maximum	56.1	27	21.2	1.52	1.20	22.8	329	94.0
Minimum	55.2	26	20.0	1.20	1.20	21.5	315	89.9
		N-\	/alue: 10					

Sample Interval Time: 24.69 seconds.

#### Summary of SPT Test Results

Project: Tri-Stat	te CME 45 Ba	arge Rig, Tes	st Date: 12/17	/2019									
BPM: Blows/Mi	nute										DFN: Final Di	splacement	
FMX: Maximum	n Force									(	CSX: Compre	ession Stress	Maximum
VMX: Maximum	n Velocity									I	EFV: Maximu	ım Energy	
DMX: Maximum	n Displaceme	ent								I	ETR: Energy	Transfer Rat	io - Rated
Instr.	Start	Final	Blows	Ν	N60	Average	Average	Average	Average	Average	Average	Average	Average
Length	Depth	Depth	Applied	Value	Value	BPM	FMX	VMX	DMX	DFN	CSX	EFV	ETR
ft	ft	ft	/6"			bpm	kips	ft/s	in	in	ksi	ft-lb	%
33.05	28.50	30.00	14-5-5	10	15	55.7	26	20.6	1.37	1.20	22.1	321	91.8
			Ov	erall Average	e Values:	55.7	26	20.6	1.37	1.20	22.1	321	91.8
				Standard D	Deviation:	0.3	0	0.4	0.12	0.00	0.4	4	1.1
			Ove	erall Maximu	ım Value:	56.1	27	21.2	1.52	1.20	22.8	329	94.0
			Ov	erall Minimu	ım Value:	55.2	26	20.0	1.20	1.20	21.5	315	89.9

JAJ

Page 1 of 3 PDA-S Ver. 2019.30.82 - Printed: 12/19/2019

Tri-State CME 45 Barge Rig Test Hole 
 AR:
 1.19
 in^2

 LE:
 35.40
 ft

 WS:
 16807.9
 ft/s
 in^2

32.0 to 33.5 ft Test date: 12/17/2019

SP: 0.492 k/ft3

EM: 30000 ksi

F@35.40 ft (5 V@35.40 ft (2	0 kips)	2.00 - 33.50 ft], displaying BN: 42 A1,2 F1,2
TS: 14.34	MS Contraction	Man Aman
TB: 3.16		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

F1 : [203 AWJ-1] 214.31 PDICAL (1) FF1 F2 : [203 AWJ-2] 214.45 PDICAL (1) FF1

A1 (PR): [K10181] 356 mv/6.4v/5000g (1) VF1 A2 (PR): [K10182] 368 mv/6.4v/5000g (1) VF1

BPM: Blows/N	<i>l</i> inute							Final Displa		
FMX: Maximu								Compressio		aximum
VMX: Maximu	•							Maximum E		
DMX: Maximu								Energy Tra		
BL#	LP	BC	BPM	FMX	VMX	DMX	DFN	CSX	EFV	ETR
	ft	/6"	bpm	kips	ft/s	in	in	ksi	ft-lb	%
1	32.10	5	1.9	27	22.3	1.27	1.20	22.5	327	93.4
2	32.20	5	20.2	29	20.9	1.32	1.20	24.4	333	95.1
3	32.30	5	59.0	28	20.8	1.26	1.20	23.8	315	89.9
4	32.40	5	55.7	28	20.5	1.26	1.20	23.8	308	88.0
5	32.50	5	55.6	28	20.6	1.31	1.19	23.9	306	87.4
6	32.53	16	55.9	28	21.1	0.93	0.36	23.8	278	79.3
7	32.56	16	55.7	28	20.3	0.94	0.36	23.9	280	80.1
8	32.59	16	55.2	28	20.6	0.59	0.38	23.9	322	92.0
9	32.63	16	55.4	29	20.5	0.48	0.37	24.2	327	93.4
10	32.66	16	55.2	29	20.2	0.43	0.37	24.3	335	95.8
11	32.69	16	55.4	29	20.1	0.44	0.38	24.4	332	94.9
12	32.72	16	55.5	29	20.2	0.43	0.38	24.0	338	96.6
13	32.75	16	55.2	29	20.4	0.44	0.38	24.4	335	95.7
14	32.78	16	55.7	29	20.4	0.44	0.38	24.2	337	96.2
15	32.81	16	55.2	29	20.7	0.45	0.38	24.1	337	96.4
16	32.84	16	55.5	29	20.3	0.44	0.38	24.1	337	96.3
17	32.88	16	55.3	29	20.4	0.44	0.38	24.3	341	97.3
18	32.91	16	55.6	29	20.7	0.43	0.38	24.1	340	97.0
19	32.94	16	55.4	28	20.6	0.44	0.38	23.9	336	96.1
20	32.97	16	55.2	29	20.8	0.43	0.38	24.1	344	98.3
21	33.00	16	55.5	29	20.8	0.43	0.38	24.1	348	99.3
22	33.02	23	55.4	29	21.2	0.43	0.26	24.5	343	98.1
23	33.04	23	55.7	29	20.7	0.41	0.26	24.2	333	95.2
24	33.07	23	55.2	29	20.8	0.41	0.26	24.6	335	95.8
25	33.09	23	55.4	30	21.2	0.42	0.26	24.8	332	94.8
26	33.11	23	55.3	29	21.1	0.42	0.26	24.5	328	93.9
27	33.13	23	55.3	29	21.0	0.43	0.26	24.1	329	94.0

Page 2 of 3 PDA-S Ver. 2019.30.82 - Printed: 12/19/2019

28	33.15	23	55.3	29	21.2	0.42	0.26	24.2	332	94.9
29	33.17	23	55.0	30	21.4	0.42	0.26	24.8	342	97.7
30	33.20	23	55.4	29	21.3	0.42	0.26	24.5	337	96.2
31	33.22	23	55.3	30	21.4	0.43	0.26	24.8	333	95.2
32	33.24	23	55.2	30	21.7	0.43	0.26	24.9	339	96.7
33	33.26	23	55.1	30	21.6	0.44	0.26	24.9	339	96.9
34	33.28	23	55.2	30	21.5	0.43	0.26	24.9	339	96.8
35	33.30	23	55.4	29	21.6	0.42	0.26	24.8	338	96.5
36	33.33	23	54.9	30	22.3	0.42	0.26	25.4	341	97.3
37	33.35	23	55.0	30	21.8	0.42	0.26	25.3	337	96.1
38	33.37	23	55.5	30	21.8	0.43	0.26	25.2	332	95.0
39	33.39	23	55.0	30	21.9	0.44	0.26	25.2	340	97.2
40	33.41	23	55.2	29	21.9	0.44	0.26	24.8	340	97.0
41	33.43	23	54.9	29	21.7	0.44	0.26	24.5	332	94.8
42	33.46	23	55.5	29	21.8	0.45	0.26	24.6	337	96.2
43	33.48	23	54.7	29	21.7	0.44	0.26	24.3	338	96.5
44	33.50	23	54.8	28	21.6	0.45	0.26	23.7	332	94.9
	/	Average	55.3	29	21.1	0.46	0.31	24.4	333	95.2
		Std Dev	0.3	1	0.6	0.11	0.06	0.4	13	3.9
	Μ	aximum	55.9	30	22.3	0.94	0.38	25.4	348	99.3
	N	1inimum	54.7	28	20.1	0.41	0.26	23.7	278	79.3
				N ₋	20 · aulua					

N-value: 39

Sample Interval Time: 48.39 seconds.

#### Summary of SPT Test Results

Project: Tri-Stat	e CME 45 Ba	arge Rig, Te	st Date: 12/17	/2019									
BPM: Blows/Mi	nute										DFN: Final Di	splacement	
FMX: Maximum	n Force									(	CSX: Compre	ssion Stress	Maximum
VMX: Maximum	n Velocity									I	EFV: Maximu	m Energy	
DMX: Maximum	n Displaceme	nt								I	ETR: Energy	Transfer Rati	o - Rated
Instr.	Start	Final	Blows	N	N60	Average	Average	Average	Average	Average	Average	Average	Average
Length	Depth	Depth	Applied	Value	Value	BPM	FMX	VMX	DMX	DFN	CSX	EFV	ETR
ft	ft	ft	/6"			bpm	kips	ft/s	in	in	ksi	ft-lb	%
35.40	32.00	33.50	5-16-23	39	61	55.3	29	21.1	0.46	0.31	24.4	333	95.2
			Ov	erall Average	e Values:	55.3	29	21.1	0.46	0.31	24.4	333	95.2
				Standard D	eviation:	0.3	1	0.6	0.11	0.06	0.4	13	3.9
			Ove	erall Maximu	m Value:	55.9	30	22.3	0.94	0.38	25.4	348	99.3
			Ov	erall Minimu	m Value:	54.7	28	20.1	0.41	0.26	23.7	278	79.3

Page 1 of 3 PDA-S Ver. 2019.30.82 - Printed: 12/19/2019

 Tri-State CME 45 Barge Rig

 JAJ

 Test Hole

 AR: 1.19
 in^2

 LE: 38.40
 ft

 WS: 16807.9
 ft/s

33.5 to 35.0 ft Test date: 12/17/2019

SP: 0.492 k/ft3

EM: 30000 ksi

F@38.40 ft (50 kip V@38.40 ft (23.5	os)	BN: 1 - 59, disț	Sugnig DN. OF		A1,2 F1,2
	han	N	m	$\sim$	
TS: 16 TB: 2.62			M	~~~~	

F1 : [203 AWJ-1] 214.31 PDICAL (1) FF4 F2 : [203 AWJ-2] 214.45 PDICAL (1) FF4 A1 (PR): [K10181] 356 mv/6.4v/5000g (1) VF4 A2 (PR): [K10182] 368 mv/6.4v/5000g (1) VF4

BPM: Blows/M	<i>l</i> inute						DFN:	Final Displa	cement	
FMX: Maximu	Im Force						CSX:	Compressio	on Stress Ma	aximum
VMX: Maximu							EFV:	Maximum E	Inergy	
DMX: Maximu	ım Displacem	ent					ETR:	Energy Tra	nsfer Ratio -	Rated
BL#	LP	BC	BPM	FMX	VMX	DMX	DFN	CSX	EFV	ETR
	ft	/6"	bpm	kips	ft/s	in	in	ksi	ft-lb	%
1	33.51	0	18.3	26	21.0	1.17	0.10	22.0	312	89.3
2	33.52	0	60.7	26	21.7	0.46	0.10	22.0	327	93.4
3	33.53	0	54.9	26	20.5	0.37	0.10	22.3	320	91.5
4	33.53	0	54.3	27	21.0	0.40	0.10	22.8	329	94.1
5	33.54	0	55.2	27	21.2	0.40	0.10	22.4	329	94.0
6	33.55	0	54.5	27	21.1	0.39	0.10	22.5	328	93.7
7	33.56	0	55.0	27	21.2	0.39	0.10	22.9	325	92.9
8	33.57	0	54.7	28	21.3	0.36	0.10	23.7	331	94.5
9	33.58	0	54.9	29	21.3	0.35	0.10	24.7	326	93.1
10	33.58	0	54.4	28	20.7	0.35	0.10	23.7	322	92.0
11	33.59	0	55.0	28	21.0	0.34	0.10	23.9	322	92.1
12	33.60	0	54.7	28	21.0	0.35	0.10	23.8	323	92.4
13	33.61	0	54.8	29	20.9	0.35	0.10	24.0	327	93.4
14	33.62	0	54.8	28	21.4	0.35	0.10	23.9	327	93.5
15	33.63	0	54.9	28	20.8	0.34	0.10	23.8	324	92.7
16	33.64	0	55.1	28	21.1	0.35	0.10	23.8	328	93.6
17	33.64	0	54.7	28	21.1	0.34	0.10	23.9	324	92.6
18	33.65	0	54.7	28	21.5	0.33	0.10	23.7	325	92.9
19	33.66	0	54.9	29	21.4	0.34	0.10	24.2	330	94.3
20	33.67	0	54.6	28	21.5	0.34	0.10	23.5	328	93.8
21	33.68	0	54.5	28	22.3	0.34	0.10	23.9	331	94.5
22	33.69	0	55.0	28	22.6	0.34	0.10	23.8	328	93.7
23	33.69	0	54.7	28	22.5	0.33	0.10	23.8	329	94.1
24	33.70	0	54.7	28	22.5	0.34	0.10	23.7	326	93.3
25	33.71	0	54.7	28	22.4	0.34	0.10	23.5	331	94.6
26	33.72	0	54.9	28	22.5	0.33	0.10	23.3	324	92.4
27	33.73	0	54.1	28	22.5	0.34	0.10	23.4	333	95.1

28	33.74	0	54.8	28	22.5	0.34	0.10	23.4	329	94.0
29	33.75	0	54.7	28	22.1	0.36	0.10	23.4	340	97.1
30	33.75	0	54.3	29	22.5	0.36	0.10	24.1	338	96.5
31	33.76	0	54.8	29	22.0	0.34	0.10	24.5	327	93.5
32	33.77	0	54.4	28	22.3	0.33	0.10	23.7	328	93.8
33	33.78	0	54.8	28	22.3	0.35	0.10	23.2	332	94.9
34	33.79	0	54.4	28	22.3	0.34	0.10	23.5	330	94.2
35	33.80	0	54.7	28	22.3	0.35	0.10	23.6	337	96.4
36	33.81	0	54.4	28	22.4	0.35	0.10	23.7	337	96.2
37	33.81	0	55.1	28	21.9	0.33	0.10	23.3	324	92.6
38	33.82	0	54.4	28	21.7	0.34	0.10	23.3	327	93.3
39	33.83	0	53.9	28	22.3	0.34	0.10	23.6	338	96.6
40	33.84	0	54.6	28	21.7	0.33	0.10	23.5	333	95.1
41	33.85	0	55.0	28	21.9	0.34	0.10	23.6	333	95.2
42	33.86	0	54.2	28	21.9	0.34	0.10	23.6	330	94.4
43	33.86	0	54.6	28	22.0	0.34	0.10	23.5	331	94.5
44	33.87	0	54.4	28	22.0	0.34	0.10	23.5	330	94.3
45	33.88	0	54.7	28	21.8	0.33	0.10	23.6	330	94.4
46	33.89	0	54.5	28	21.9	0.33	0.10	23.6	329	94.0
47	33.90	0	54.0	28	22.1	0.33	0.10	23.7	330	94.3
48	33.91	0	54.5	28	22.1	0.33	0.10	23.7	329	94.0
49	33.92	0	54.7	28	21.8	0.34	0.10	23.4	331	94.5
50	33.92	0	54.2	28	21.9	0.34	0.10	23.7	330	94.2
51	33.93	0	54.5	28	21.8	0.34	0.10	23.3	327	93.6
52	33.94	0	54.1	28	21.9	0.33	0.10	23.5	330	94.3
53	33.95	0	54.7	28	21.8	0.33	0.10	23.3	327	93.4
54	33.96	0	54.0	28	21.5	0.34	0.10	23.3	332	94.7
55	33.97	0	54.3	28	21.7	0.34	0.10	23.2	330	94.2
56	33.97	0	54.5	28	21.9	0.34	0.10	23.4	334	95.6
57	33.98	0	54.1	28	21.6	0.33	0.10	23.4	330	94.3
58	33.99	0	54.4	28	21.7	0.33	0.10	23.6	328	93.7
59	34.00	0	54.7	28	21.6	0.34	0.10	23.2	332	94.9
		Average	54.1	28	21.7	0.36	0.10	23.5	329	94.0
		Std Dev	4.8	1	0.5	0.11	0.00	0.5	4	1.3
		laximum	60.7	29	22.6	1.17	0.10	24.7	340	97.1
	Ν	/linimum	18.3	26	20.5	0.33	0.10	22.0	312	89.3
				N-v	/alue: 59					

Sample Interval Time: 63.51 seconds.

#### Summary of SPT Test Results

Project: Tri-Stat	e CME 45 Ba	arge Rig, Te	st Date: 12/17	/2019									
BPM: Blows/Mi	nute										DFN: Final Di	splacement	
FMX: Maximum	n Force									(	CSX: Compre	ssion Stress	Maximum
VMX: Maximum	n Velocity									I	EFV: Maximu	m Energy	
DMX: Maximum	n Displaceme	ent								I	ETR: Energy	Transfer Rati	o - Rated
Instr.	Start	Final	Blows	N	N60	Average	Average	Average	Average	Average	Average	Average	Average
Length	Depth	Depth	Applied	Value	Value	BPM	FMX	VMX	DMX	DFN	CSX	EFV	ETR
ft	ft	ft	/6"			bpm	kips	ft/s	in	in	ksi	ft-lb	%
38.40	0.00	0.00	50 blows	s over 3 in.		54.1	28	21.7	0.36	0.10	23.5	329	94.0
			Ov	erall Average	e Values:	54.1	28	21.7	0.36	0.10	23.5	329	94.0
				Standard D	eviation:	4.8	1	0.5	0.11	0.00	0.5	4	1.3
			Ove	erall Maximu	m Value:	60.7	29	22.6	1.17	0.10	24.7	340	97.1
			Ov	erall Minimu	m Value:	18.3	26	20.5	0.33	0.10	22.0	312	89.3



**Smart Sensor** 

Smart Chip Programmed By XM. W. on 4DEC17 CRC Value 6407



#### **Smart Sensor**

Smart Chip Programmed By Z.M.W. on 4DEC17 CRC Value 1798

203AWJ		Cycle 1		
Sample	Force (lb)	Strain (µE)	Bridge 1 (V)	Bridge 2 (V)
1	0.00	0.00	0.00	0.00
2	1238.45	35.09	0.16	0.16
3	2101.82	59.39	0.28	0.28
4	3386.54	94.77	0.44	0.44
5	4235.08	119.35	0.56	0.56
6	5136.73	144.58	0.67	0.67
7	6021.00	168.91	0.79	0.79
8	7359.61	207.34	0.97	0.97
9	8298.94	232.84	1.09	1.09
10	9187.31	257.76	1.21	1.20
11	10120.00	284.12	1.33	1.33

Bridge 1		Bridge 2	
Force Calibration (lb/V)	7630.77	Force Calibration (lb/V)	7630.97
Offset	-7.83	Offset	-3.17
Correlation	1.000000	Correlation	0.999999
Strain Calibration (µE/V)	213.97	Strain Calibration (µE/V)	213.98
Offset	0.12	Offset	0.25
Correlation	0.999992	Correlation	0.999995

Force Strain Calibration	
EA (Kips)	35662.28
Offset	-12.17
Correlation	0.999993



203AWJ		Cycle 2		
Sample	Force (lb)	Strain (µE)	Bridge 1 (V)	Bridge 2 (V)
1	0.00	0.00	0.00	0.00
2	883.29	25.21	0.12	0.12
3	1765.61	49.65	0.23	0.23
4	3049.75	86.59	0.40	0.40
5	3958.42	112.20	0.52	0.52
6	4857.33	137.43	0.64	0.64
7	5743.75	162.78	0.76	0.76
8	7145.42	202.15	0.94	0.94
9	8044.14	227.44	1.06	1.06
10	8969.22	253.99	1.18	1.18
11	9924.95	280.34	1.30	1.30

Bridge 1		Bridge 2	
Force Calibration (lb/V)	7617.86	Force Calibration (lb/V)	7627.07
Offset	-11.91	Offset	-18.36
Correlation	0.999998	Correlation	1.000000
Strain Calibration (µE/V)	215.30	Strain Calibration (µE/V)	215.56
Offset	-0.14	Offset	-0.33
Correlation	0.999995	Correlation	0.999996

Force Strain Calibration	
EA (Kips)	35381.61
Offset	-6.76
Correlation	0.999996



203AWJ		Cycle 3		
Sample	Force (lb)	Strain (µE)	Bridge 1 (V)	Bridge 2 (V)
1	0.00	0.00	0.00	0.00
2	843.85	23.93	0.11	0.11
3	2145.36	61.00	0.28	0.28
4	3029.63	85.25	0.40	0.40
5	3880.71	109.47	0.51	0.51
6	5241.19	147.71	0.69	0.69
7	6147.33	172.47	0.81	0.81
8	7034.72	198.06	0.92	0.92
9	7979.71	224.33	1.05	1.05
10	8906.15	249.58	1.17	1.17
11	9817.56	275.86	1.29	1.29

Bridge 1		Bridge 2	
Force Calibration (lb/V)	7623.93	Force Calibration (Ib/V)	7629.88
Offset	-3.49	Offset	-9.59
Correlation	0.999999	Correlation	0.999999
Strain Calibration (µE/V)	213.65	Strain Calibration (µE/V)	213.81
Offset	0.47	Offset	0.30
Correlation	0.999992	Correlation	0.999991

Force Strain Calibration	
EA (Kips)	35684.19
Offset	-20.08
Correlation	0.999992

¥



Bridge Excitation (V) Shunt Resitor (ohm)

 $\mathbf{r} = \mathbf{V} \cdot \mathbf{r} = \mathbf{S}$ 

5 60.4k

Calibration Factors	203AWJ		
Bridge 1 (µE/V)	214.31	Bridge 2 (µE/V)	214.45
EA Factor (Kips)	35576.02	Area (in^2)	1.19

Calibrated by: ____ Calibrated Date: a Λ 2/26/2019

Pile Dynamics Inc 30725 Aurora Rd Solon, OH 44139

Traceable to N.I.S.T.

## IMPORTANT INFORMATION ABOUT THIS GEOTECHNICAL-ENGINEERING REPORT

# Important Information about This Geotechnical-Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

#### While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

The Geoprofessional Business Association (GBA) has prepared this advisory to help you - assumedly a client representative - interpret and apply this geotechnical-engineering report as effectively as possible. In that way, clients can benefit from a lowered exposure to the subsurface problems that, for decades, have been a principal cause of construction delays, cost overruns, claims, and disputes. If you have questions or want more information about any of the issues discussed below, contact your GBA-member geotechnical engineer. Active involvement in the Geoprofessional Business Association exposes geotechnical engineers to a wide array of risk-confrontation techniques that can be of genuine benefit for everyone involved with a construction project.

## Geotechnical-Engineering Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical-engineering study conducted for a given civil engineer will not likely meet the needs of a civilworks constructor or even a different civil engineer. Because each geotechnical-engineering study is unique, each geotechnicalengineering report is unique, prepared *solely* for the client. *Those who rely on a geotechnical-engineering report prepared for a different client can be seriously misled*. No one except authorized client representatives should rely on this geotechnical-engineering report without first conferring with the geotechnical engineer who prepared it. *And no one – not even you – should apply this report for any purpose or project except the one originally contemplated*.

#### Read this Report in Full

Costly problems have occurred because those relying on a geotechnicalengineering report did not read it *in its entirety*. Do not rely on an executive summary. Do not read selected elements only. *Read this report in full*.

## You Need to Inform Your Geotechnical Engineer about Change

Your geotechnical engineer considered unique, project-specific factors when designing the study behind this report and developing the confirmation-dependent recommendations the report conveys. A few typical factors include:

- the client's goals, objectives, budget, schedule, and risk-management preferences;
- the general nature of the structure involved, its size, configuration, and performance criteria;
- the structure's location and orientation on the site; and
- other planned or existing site improvements, such as retaining walls, access roads, parking lots, and underground utilities.

Typical changes that could erode the reliability of this report include those that affect:

- the site's size or shape;
- the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light-industrial plant to a refrigerated warehouse;
- the elevation, configuration, location, orientation, or weight of the proposed structure;
- the composition of the design team; or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes – even minor ones – and request an assessment of their impact. *The geotechnical engineer who prepared this report cannot accept responsibility or liability for problems that arise because the geotechnical engineer was not informed about developments the engineer otherwise would have considered.* 

#### This Report May Not Be Reliable

Do not rely on this report if your geotechnical engineer prepared it:

- for a different client;
- for a different project;
- for a different site (that may or may not include all or a portion of the original site); or
- before important events occurred at the site or adjacent to it; e.g., man-made events like construction or environmental remediation, or natural events like floods, droughts, earthquakes, or groundwater fluctuations.

Note, too, that it could be unwise to rely on a geotechnical-engineering report whose reliability may have been affected by the passage of time, because of factors like changed subsurface conditions; new or modified codes, standards, or regulations; or new techniques or tools. *If your geotechnical engineer has not indicated an "apply-by" date on the report, ask what it should be*, and, in general, *if you are the least bit uncertain* about the continued reliability of this report, contact your geotechnical engineer before applying it. A minor amount of additional testing or analysis – if any is required at all – could prevent major problems.

#### Most of the "Findings" Related in This Report Are Professional Opinions

Before construction begins, geotechnical engineers explore a site's subsurface through various sampling and testing procedures. *Geotechnical engineers can observe actual subsurface conditions only at those specific locations where sampling and testing were performed.* The data derived from that sampling and testing were reviewed by your geotechnical engineer, who then applied professional judgment to form opinions about subsurface conditions throughout the site. Actual sitewide-subsurface conditions may differ – maybe significantly – from those indicated in this report. Confront that risk by retaining your geotechnical engineer to serve on the design team from project start to project finish, so the individual can provide informed guidance quickly, whenever needed.

#### This Report's Recommendations Are Confirmation-Dependent

The recommendations included in this report – including any options or alternatives – are confirmation-dependent. In other words, *they are not final*, because the geotechnical engineer who developed them relied heavily on judgment and opinion to do so. Your geotechnical engineer can finalize the recommendations *only after observing actual subsurface conditions* revealed during construction. If through observation your geotechnical engineer confirms that the conditions assumed to exist actually do exist, the recommendations can be relied upon, assuming no other changes have occurred. *The geotechnical engineer who prepared this report cannot assume responsibility or liability for confirmationdependent recommendations if you fail to retain that engineer to perform construction observation*.

#### This Report Could Be Misinterpreted

Other design professionals' misinterpretation of geotechnicalengineering reports has resulted in costly problems. Confront that risk by having your geotechnical engineer serve as a full-time member of the design team, to:

- confer with other design-team members,
- help develop specifications,
- review pertinent elements of other design professionals' plans and specifications, and
- be on hand quickly whenever geotechnical-engineering guidance is needed.

You should also confront the risk of constructors misinterpreting this report. Do so by retaining your geotechnical engineer to participate in prebid and preconstruction conferences and to perform construction observation.

#### **Give Constructors a Complete Report and Guidance**

Some owners and design professionals mistakenly believe they can shift unanticipated-subsurface-conditions liability to constructors by limiting the information they provide for bid preparation. To help prevent the costly, contentious problems this practice has caused, include the complete geotechnical-engineering report, along with any attachments or appendices, with your contract documents, *but be certain to note conspicuously that you've included the material for informational purposes only.* To avoid misunderstanding, you may also want to note that "informational purposes" means constructors have no right to rely on the interpretations, opinions, conclusions, or recommendations in the report, but they may rely on the factual data relative to the specific times, locations, and depths/elevations referenced. Be certain that constructors know they may learn about specific project requirements, including options selected from the report, *only* from the design drawings and specifications. Remind constructors that they may perform their own studies if they want to, and *be sure to allow enough time* to permit them to do so. Only then might you be in a position to give constructors the information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions. Conducting prebid and preconstruction conferences can also be valuable in this respect.

#### **Read Responsibility Provisions Closely**

Some client representatives, design professionals, and constructors do not realize that geotechnical engineering is far less exact than other engineering disciplines. That lack of understanding has nurtured unrealistic expectations that have resulted in disappointments, delays, cost overruns, claims, and disputes. To confront that risk, geotechnical engineers commonly include explanatory provisions in their reports. Sometimes labeled "limitations," many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely*. Ask questions. Your geotechnical engineer should respond fully and frankly.

#### **Geoenvironmental Concerns Are Not Covered**

The personnel, equipment, and techniques used to perform an environmental study – e.g., a "phase-one" or "phase-two" environmental site assessment – differ significantly from those used to perform a geotechnical-engineering study. For that reason, a geotechnicalengineering report does not usually relate any environmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated subsurface environmental problems have led to project failures*. If you have not yet obtained your own environmental information, ask your geotechnical consultant for risk-management guidance. As a general rule, *do not rely on an environmental report prepared for a different client, site, or project, or that is more than six months old.* 

## Obtain Professional Assistance to Deal with Moisture Infiltration and Mold

While your geotechnical engineer may have addressed groundwater, water infiltration, or similar issues in this report, none of the engineer's services were designed, conducted, or intended to prevent uncontrolled migration of moisture – including water vapor – from the soil through building slabs and walls and into the building interior, where it can cause mold growth and material-performance deficiencies. Accordingly, *proper implementation of the geotechnical engineer's recommendations will not of itself be sufficient to prevent moisture infiltration*. Confront the risk of moisture infiltration by including building-envelope or mold specialists on the design team. *Geotechnical engineers are not buildingenvelope or mold specialists*.



Telephone: 301/565-2733 e-mail: info@geoprofessional.org www.geoprofessional.org

Copyright 2016 by Geoprofessional Business Association (GBA). Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with GBA's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of GBA, and only for purposes of scholarly research or book review. Only members of GBA may use this document or its wording as a complement to or as an element of a report of any kind. Any other firm, individual, or other entity that so uses this document without being a GBA member could be committing negligent